Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895564844> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2895564844 endingPage "50" @default.
- W2895564844 startingPage "37" @default.
- W2895564844 abstract "We propose to represent a return model and risk model in a unified manner with deep learning, which is a representative model that can express a nonlinear relationship. Although deep learning performs quite well, it has significant disadvantages such as a lack of transparency and limitations to the interpretability of the prediction. This is prone to practical problems in terms of accountability. Thus, we construct a multifactor model by using interpretable deep learning. We implement deep learning as a return model to predict stock returns with various factors. Then, we present the application of layer-wise relevance propagation (LRP) to decompose attributes of the predicted return as a risk model. By applying LRP to an individual stock or a portfolio basis, we can determine which factor contributes to prediction. We call this model a deep factor model. We then perform an empirical analysis on the Japanese stock market and show that our deep factor model has better predictive capability than the traditional linear model or other machine learning methods. In addition, we illustrate which factor contributes to prediction." @default.
- W2895564844 created "2018-10-12" @default.
- W2895564844 creator A5000707840 @default.
- W2895564844 creator A5048346383 @default.
- W2895564844 creator A5086122043 @default.
- W2895564844 date "2019-01-01" @default.
- W2895564844 modified "2023-10-13" @default.
- W2895564844 title "Deep Factor Model" @default.
- W2895564844 cites W1787224781 @default.
- W2895564844 cites W1970205847 @default.
- W2895564844 cites W2002882686 @default.
- W2895564844 cites W2010648296 @default.
- W2895564844 cites W2010681793 @default.
- W2895564844 cites W2035293670 @default.
- W2895564844 cites W2128620029 @default.
- W2895564844 cites W2134807435 @default.
- W2895564844 cites W2136120210 @default.
- W2895564844 cites W2151306296 @default.
- W2895564844 cites W2166215547 @default.
- W2895564844 cites W2182051792 @default.
- W2895564844 cites W2284153934 @default.
- W2895564844 cites W2600655586 @default.
- W2895564844 cites W2911964244 @default.
- W2895564844 cites W2963495788 @default.
- W2895564844 cites W4211170237 @default.
- W2895564844 doi "https://doi.org/10.1007/978-3-030-13463-1_3" @default.
- W2895564844 hasPublicationYear "2019" @default.
- W2895564844 type Work @default.
- W2895564844 sameAs 2895564844 @default.
- W2895564844 citedByCount "4" @default.
- W2895564844 countsByYear W28955648442019 @default.
- W2895564844 countsByYear W28955648442020 @default.
- W2895564844 countsByYear W28955648442023 @default.
- W2895564844 crossrefType "book-chapter" @default.
- W2895564844 hasAuthorship W2895564844A5000707840 @default.
- W2895564844 hasAuthorship W2895564844A5048346383 @default.
- W2895564844 hasAuthorship W2895564844A5086122043 @default.
- W2895564844 hasBestOaLocation W28955648442 @default.
- W2895564844 hasConcept C10138342 @default.
- W2895564844 hasConcept C108583219 @default.
- W2895564844 hasConcept C10879293 @default.
- W2895564844 hasConcept C119857082 @default.
- W2895564844 hasConcept C149782125 @default.
- W2895564844 hasConcept C151730666 @default.
- W2895564844 hasConcept C154945302 @default.
- W2895564844 hasConcept C162324750 @default.
- W2895564844 hasConcept C2780299701 @default.
- W2895564844 hasConcept C2780762169 @default.
- W2895564844 hasConcept C2780821815 @default.
- W2895564844 hasConcept C2781067378 @default.
- W2895564844 hasConcept C41008148 @default.
- W2895564844 hasConcept C86803240 @default.
- W2895564844 hasConceptScore W2895564844C10138342 @default.
- W2895564844 hasConceptScore W2895564844C108583219 @default.
- W2895564844 hasConceptScore W2895564844C10879293 @default.
- W2895564844 hasConceptScore W2895564844C119857082 @default.
- W2895564844 hasConceptScore W2895564844C149782125 @default.
- W2895564844 hasConceptScore W2895564844C151730666 @default.
- W2895564844 hasConceptScore W2895564844C154945302 @default.
- W2895564844 hasConceptScore W2895564844C162324750 @default.
- W2895564844 hasConceptScore W2895564844C2780299701 @default.
- W2895564844 hasConceptScore W2895564844C2780762169 @default.
- W2895564844 hasConceptScore W2895564844C2780821815 @default.
- W2895564844 hasConceptScore W2895564844C2781067378 @default.
- W2895564844 hasConceptScore W2895564844C41008148 @default.
- W2895564844 hasConceptScore W2895564844C86803240 @default.
- W2895564844 hasLocation W28955648441 @default.
- W2895564844 hasLocation W28955648442 @default.
- W2895564844 hasOpenAccess W2895564844 @default.
- W2895564844 hasPrimaryLocation W28955648441 @default.
- W2895564844 hasRelatedWork W2605281151 @default.
- W2895564844 hasRelatedWork W3006943036 @default.
- W2895564844 hasRelatedWork W3129898729 @default.
- W2895564844 hasRelatedWork W3191046242 @default.
- W2895564844 hasRelatedWork W4206534706 @default.
- W2895564844 hasRelatedWork W4213225422 @default.
- W2895564844 hasRelatedWork W4229079080 @default.
- W2895564844 hasRelatedWork W4294031299 @default.
- W2895564844 hasRelatedWork W4299487748 @default.
- W2895564844 hasRelatedWork W4310880831 @default.
- W2895564844 isParatext "false" @default.
- W2895564844 isRetracted "false" @default.
- W2895564844 magId "2895564844" @default.
- W2895564844 workType "book-chapter" @default.