Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895575237> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2895575237 abstract "Let $F$ be a $2$-regular graph of order $v$. The Oberwolfach problem, $OP(F)$, asks for a $2$-factorization of the complete graph on $v$ vertices in which each $2$-factor is isomorphic to $F$. In this paper, we give a complete solution to the Oberwolfach problem over infinite complete graphs, proving the existence of solutions that are regular under the action of a given involution free group $G$. We will also consider the same problem in the more general contest of graphs $F$ that are spanning subgraphs of an infinite complete graph $mathbb{K}$ and we provide a solution when $F$ is locally finite. Moreover, we characterize the infinite subgraphs $L$ of $F$ such that there exists a solution to $OP(F)$ containing a solution to $OP(L)$." @default.
- W2895575237 created "2018-10-12" @default.
- W2895575237 creator A5083658948 @default.
- W2895575237 date "2018-10-06" @default.
- W2895575237 modified "2023-09-27" @default.
- W2895575237 title "A complete solution to the infinite Oberwolfach problem" @default.
- W2895575237 cites W1575344590 @default.
- W2895575237 cites W1605023168 @default.
- W2895575237 cites W1966442544 @default.
- W2895575237 cites W1987507270 @default.
- W2895575237 cites W2002197583 @default.
- W2895575237 cites W2003291535 @default.
- W2895575237 cites W2038921999 @default.
- W2895575237 cites W2043233494 @default.
- W2895575237 cites W2045234274 @default.
- W2895575237 cites W2048156596 @default.
- W2895575237 cites W2062850752 @default.
- W2895575237 cites W2102207023 @default.
- W2895575237 cites W2130401402 @default.
- W2895575237 cites W2336848484 @default.
- W2895575237 cites W61717954 @default.
- W2895575237 hasPublicationYear "2018" @default.
- W2895575237 type Work @default.
- W2895575237 sameAs 2895575237 @default.
- W2895575237 citedByCount "0" @default.
- W2895575237 crossrefType "posted-content" @default.
- W2895575237 hasAuthorship W2895575237A5083658948 @default.
- W2895575237 hasConcept C11413529 @default.
- W2895575237 hasConcept C114614502 @default.
- W2895575237 hasConcept C118615104 @default.
- W2895575237 hasConcept C132525143 @default.
- W2895575237 hasConcept C187834632 @default.
- W2895575237 hasConcept C33923547 @default.
- W2895575237 hasConceptScore W2895575237C11413529 @default.
- W2895575237 hasConceptScore W2895575237C114614502 @default.
- W2895575237 hasConceptScore W2895575237C118615104 @default.
- W2895575237 hasConceptScore W2895575237C132525143 @default.
- W2895575237 hasConceptScore W2895575237C187834632 @default.
- W2895575237 hasConceptScore W2895575237C33923547 @default.
- W2895575237 hasLocation W28955752371 @default.
- W2895575237 hasOpenAccess W2895575237 @default.
- W2895575237 hasPrimaryLocation W28955752371 @default.
- W2895575237 hasRelatedWork W1984423492 @default.
- W2895575237 hasRelatedWork W1994037159 @default.
- W2895575237 hasRelatedWork W2051982950 @default.
- W2895575237 hasRelatedWork W2065971189 @default.
- W2895575237 hasRelatedWork W2069012352 @default.
- W2895575237 hasRelatedWork W2079429961 @default.
- W2895575237 hasRelatedWork W2083217720 @default.
- W2895575237 hasRelatedWork W2128564445 @default.
- W2895575237 hasRelatedWork W2740629715 @default.
- W2895575237 hasRelatedWork W2949770414 @default.
- W2895575237 hasRelatedWork W2963408774 @default.
- W2895575237 hasRelatedWork W2965949647 @default.
- W2895575237 hasRelatedWork W3045581041 @default.
- W2895575237 hasRelatedWork W3084146406 @default.
- W2895575237 hasRelatedWork W3088966738 @default.
- W2895575237 hasRelatedWork W3107545586 @default.
- W2895575237 hasRelatedWork W3131111727 @default.
- W2895575237 hasRelatedWork W3134252054 @default.
- W2895575237 hasRelatedWork W3139396960 @default.
- W2895575237 hasRelatedWork W3140583360 @default.
- W2895575237 isParatext "false" @default.
- W2895575237 isRetracted "false" @default.
- W2895575237 magId "2895575237" @default.
- W2895575237 workType "article" @default.