Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895578045> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2895578045 abstract "Abstract Self-assembled nanostructures are increasingly used for nanoelectronic and optoelectronic applications due to their high surface area to volume ratio and their ability to break traditional lithography limits. However, they suffer due to poor yield and repeatability as the growth process is often not well studied or optimized. Gaussian process regression (GPR) is a machine learning technique that can be used for both regression and classification purpose. In the GPR framework, a probability measure is defined according to one prior belief about the response surface and the Bayesian rule is applied to combine the observations with prior beliefs to form a posterior distribution of the response surface, which is known as the “surrogate model”. We propose here the use of GPR as an effective statistical tool to optimize the growth conditions of nanostructures so as to improve their yield, controllability and repeatability ensuring at the same time that the yield is not affected by process variations at the identified optimum process conditions. In effect, we are proposing a design for reliability and robust design strategy for optimization of self-assembled nanostructure growth. We present here a case study of cadmium selenide nanostructures making use of an extensive design of experiment result (available open source) to illustrate the proposed methodology. The prediction accuracy of GPR is compared with two other commonly used statistical models → binomial and multinomial logistic regression. The use of the GPR method resulted in much better accuracy of probabilistic prediction of the different nanostructures with fewer fitting parameters than the logistic regression method." @default.
- W2895578045 created "2018-10-12" @default.
- W2895578045 creator A5020916759 @default.
- W2895578045 creator A5043273162 @default.
- W2895578045 creator A5064500828 @default.
- W2895578045 creator A5087113711 @default.
- W2895578045 date "2018-09-01" @default.
- W2895578045 modified "2023-09-24" @default.
- W2895578045 title "Gaussian process regression approach for robust design and yield enhancement of self-assembled nanostructures" @default.
- W2895578045 cites W1988511217 @default.
- W2895578045 cites W2015581436 @default.
- W2895578045 doi "https://doi.org/10.1016/j.microrel.2018.07.062" @default.
- W2895578045 hasPublicationYear "2018" @default.
- W2895578045 type Work @default.
- W2895578045 sameAs 2895578045 @default.
- W2895578045 citedByCount "0" @default.
- W2895578045 crossrefType "journal-article" @default.
- W2895578045 hasAuthorship W2895578045A5020916759 @default.
- W2895578045 hasAuthorship W2895578045A5043273162 @default.
- W2895578045 hasAuthorship W2895578045A5064500828 @default.
- W2895578045 hasAuthorship W2895578045A5087113711 @default.
- W2895578045 hasConcept C105795698 @default.
- W2895578045 hasConcept C119857082 @default.
- W2895578045 hasConcept C121332964 @default.
- W2895578045 hasConcept C126838900 @default.
- W2895578045 hasConcept C131675550 @default.
- W2895578045 hasConcept C154945302 @default.
- W2895578045 hasConcept C163716315 @default.
- W2895578045 hasConcept C183115368 @default.
- W2895578045 hasConcept C2778049539 @default.
- W2895578045 hasConcept C33923547 @default.
- W2895578045 hasConcept C41008148 @default.
- W2895578045 hasConcept C49937458 @default.
- W2895578045 hasConcept C554190296 @default.
- W2895578045 hasConcept C61326573 @default.
- W2895578045 hasConcept C62520636 @default.
- W2895578045 hasConcept C71813955 @default.
- W2895578045 hasConcept C71924100 @default.
- W2895578045 hasConcept C76155785 @default.
- W2895578045 hasConcept C81692654 @default.
- W2895578045 hasConceptScore W2895578045C105795698 @default.
- W2895578045 hasConceptScore W2895578045C119857082 @default.
- W2895578045 hasConceptScore W2895578045C121332964 @default.
- W2895578045 hasConceptScore W2895578045C126838900 @default.
- W2895578045 hasConceptScore W2895578045C131675550 @default.
- W2895578045 hasConceptScore W2895578045C154945302 @default.
- W2895578045 hasConceptScore W2895578045C163716315 @default.
- W2895578045 hasConceptScore W2895578045C183115368 @default.
- W2895578045 hasConceptScore W2895578045C2778049539 @default.
- W2895578045 hasConceptScore W2895578045C33923547 @default.
- W2895578045 hasConceptScore W2895578045C41008148 @default.
- W2895578045 hasConceptScore W2895578045C49937458 @default.
- W2895578045 hasConceptScore W2895578045C554190296 @default.
- W2895578045 hasConceptScore W2895578045C61326573 @default.
- W2895578045 hasConceptScore W2895578045C62520636 @default.
- W2895578045 hasConceptScore W2895578045C71813955 @default.
- W2895578045 hasConceptScore W2895578045C71924100 @default.
- W2895578045 hasConceptScore W2895578045C76155785 @default.
- W2895578045 hasConceptScore W2895578045C81692654 @default.
- W2895578045 hasLocation W28955780451 @default.
- W2895578045 hasOpenAccess W2895578045 @default.
- W2895578045 hasPrimaryLocation W28955780451 @default.
- W2895578045 hasRelatedWork W2604576674 @default.
- W2895578045 hasRelatedWork W2895578045 @default.
- W2895578045 hasRelatedWork W2950792054 @default.
- W2895578045 hasRelatedWork W3034172904 @default.
- W2895578045 hasRelatedWork W3124569606 @default.
- W2895578045 hasRelatedWork W3128150010 @default.
- W2895578045 hasRelatedWork W3158200062 @default.
- W2895578045 hasRelatedWork W3215477490 @default.
- W2895578045 hasRelatedWork W4287374055 @default.
- W2895578045 hasRelatedWork W4287765344 @default.
- W2895578045 isParatext "false" @default.
- W2895578045 isRetracted "false" @default.
- W2895578045 magId "2895578045" @default.
- W2895578045 workType "article" @default.