Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895580424> ?p ?o ?g. }
- W2895580424 endingPage "135" @default.
- W2895580424 startingPage "100" @default.
- W2895580424 abstract "In this paper, we consider Maxwell's equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes studied in our previous research [5,6]. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. The results for the numerical dispersion analysis can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell's equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measures of numerical dispersion errors. Finally, we highlight the limitations of the second order accurate temporal discretizations considered." @default.
- W2895580424 created "2018-10-12" @default.
- W2895580424 creator A5002089116 @default.
- W2895580424 creator A5014389425 @default.
- W2895580424 creator A5018487878 @default.
- W2895580424 creator A5076667582 @default.
- W2895580424 creator A5077120359 @default.
- W2895580424 date "2019-10-01" @default.
- W2895580424 modified "2023-10-15" @default.
- W2895580424 title "Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell's equations in linear Lorentz media" @default.
- W2895580424 cites W1624046616 @default.
- W2895580424 cites W1969583825 @default.
- W2895580424 cites W1974089470 @default.
- W2895580424 cites W1976055054 @default.
- W2895580424 cites W2002083525 @default.
- W2895580424 cites W2006735909 @default.
- W2895580424 cites W2012833431 @default.
- W2895580424 cites W2015510320 @default.
- W2895580424 cites W2017488448 @default.
- W2895580424 cites W2022989981 @default.
- W2895580424 cites W2031165732 @default.
- W2895580424 cites W2042265695 @default.
- W2895580424 cites W2047197079 @default.
- W2895580424 cites W2053791441 @default.
- W2895580424 cites W2070281201 @default.
- W2895580424 cites W2083855576 @default.
- W2895580424 cites W2097520505 @default.
- W2895580424 cites W2098756354 @default.
- W2895580424 cites W2099321237 @default.
- W2895580424 cites W2101334621 @default.
- W2895580424 cites W2104888489 @default.
- W2895580424 cites W2108822617 @default.
- W2895580424 cites W2120329370 @default.
- W2895580424 cites W2124928947 @default.
- W2895580424 cites W2129600761 @default.
- W2895580424 cites W2133547209 @default.
- W2895580424 cites W2142063750 @default.
- W2895580424 cites W2142461402 @default.
- W2895580424 cites W2144493110 @default.
- W2895580424 cites W2144930181 @default.
- W2895580424 cites W2149882600 @default.
- W2895580424 cites W2150092954 @default.
- W2895580424 cites W2150707038 @default.
- W2895580424 cites W2155681222 @default.
- W2895580424 cites W2155713156 @default.
- W2895580424 cites W2158006240 @default.
- W2895580424 cites W2158501196 @default.
- W2895580424 cites W2163428960 @default.
- W2895580424 cites W2167473861 @default.
- W2895580424 cites W2317208281 @default.
- W2895580424 cites W2317341383 @default.
- W2895580424 cites W2606994156 @default.
- W2895580424 doi "https://doi.org/10.1016/j.jcp.2019.05.022" @default.
- W2895580424 hasPublicationYear "2019" @default.
- W2895580424 type Work @default.
- W2895580424 sameAs 2895580424 @default.
- W2895580424 citedByCount "4" @default.
- W2895580424 countsByYear W28955804242022 @default.
- W2895580424 countsByYear W28955804242023 @default.
- W2895580424 crossrefType "journal-article" @default.
- W2895580424 hasAuthorship W2895580424A5002089116 @default.
- W2895580424 hasAuthorship W2895580424A5014389425 @default.
- W2895580424 hasAuthorship W2895580424A5018487878 @default.
- W2895580424 hasAuthorship W2895580424A5076667582 @default.
- W2895580424 hasAuthorship W2895580424A5077120359 @default.
- W2895580424 hasBestOaLocation W28955804241 @default.
- W2895580424 hasConcept C120665830 @default.
- W2895580424 hasConcept C121332964 @default.
- W2895580424 hasConcept C134306372 @default.
- W2895580424 hasConcept C135628077 @default.
- W2895580424 hasConcept C158622935 @default.
- W2895580424 hasConcept C177562468 @default.
- W2895580424 hasConcept C181330731 @default.
- W2895580424 hasConcept C186899397 @default.
- W2895580424 hasConcept C205951836 @default.
- W2895580424 hasConcept C2778327290 @default.
- W2895580424 hasConcept C28826006 @default.
- W2895580424 hasConcept C33923547 @default.
- W2895580424 hasConcept C59282198 @default.
- W2895580424 hasConcept C62520636 @default.
- W2895580424 hasConcept C73000952 @default.
- W2895580424 hasConcept C92244383 @default.
- W2895580424 hasConcept C97355855 @default.
- W2895580424 hasConceptScore W2895580424C120665830 @default.
- W2895580424 hasConceptScore W2895580424C121332964 @default.
- W2895580424 hasConceptScore W2895580424C134306372 @default.
- W2895580424 hasConceptScore W2895580424C135628077 @default.
- W2895580424 hasConceptScore W2895580424C158622935 @default.
- W2895580424 hasConceptScore W2895580424C177562468 @default.
- W2895580424 hasConceptScore W2895580424C181330731 @default.
- W2895580424 hasConceptScore W2895580424C186899397 @default.
- W2895580424 hasConceptScore W2895580424C205951836 @default.
- W2895580424 hasConceptScore W2895580424C2778327290 @default.
- W2895580424 hasConceptScore W2895580424C28826006 @default.
- W2895580424 hasConceptScore W2895580424C33923547 @default.
- W2895580424 hasConceptScore W2895580424C59282198 @default.
- W2895580424 hasConceptScore W2895580424C62520636 @default.
- W2895580424 hasConceptScore W2895580424C73000952 @default.