Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895580828> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2895580828 endingPage "11" @default.
- W2895580828 startingPage "1" @default.
- W2895580828 abstract "By using the Rayleigh-Schrödinger perturbation theory the rovibrational wave function is expanded in terms of the series of functions <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> is the pure vibrational wave function and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi>ι</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> are the rotational harmonics. By replacing the Schrödinger differential equation by the Volterra integral equation the two canonical functions <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:mrow><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:mrow><mml:msub><mml:mrow><mml:mi>β</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> are well defined for a given potential function. These functions allow the determination of (i) the values of the functions <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M6><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi>ι</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> at any points; (ii) the eigenvalues of the eigenvalue equations of the functions <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M7><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>n</mml:mi></mml:mrow></mml:msub></mml:math> which are, respectively, the vibrational energy <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M8><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>E</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>v</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, the rotational constant <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M9><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>B</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>v</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, and the large order centrifugal distortion constants <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M10><mml:msub><mml:mrow><mml:mi mathvariant=normal>D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>v</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=normal>H</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>v</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=normal>L</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=normal>v</mml:mi></mml:mrow></mml:msub><mml:mo>…</mml:mo><mml:mo>.</mml:mo></mml:math>. Based on these canonical functions and in the Born-Oppenheimer approximation these constants can be obtained with accurate estimates for the low and high excited electronic state and for any values of the vibrational and rotational quantum numbers v and J even near dissociation. As application, the calculations have been done for the potential energy curves: Morse, Lenard Jones, Reidberg-Klein-Rees (RKR), ab initio, Simon-Parr-Finlin, Kratzer, and Dunhum with a variable step for the empirical potentials. A program is available for these calculations free of charge with the corresponding author." @default.
- W2895580828 created "2018-10-12" @default.
- W2895580828 creator A5003661609 @default.
- W2895580828 creator A5029520845 @default.
- W2895580828 date "2018-10-04" @default.
- W2895580828 modified "2023-10-18" @default.
- W2895580828 title "Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation" @default.
- W2895580828 cites W1529046832 @default.
- W2895580828 cites W1972530788 @default.
- W2895580828 cites W1974269745 @default.
- W2895580828 cites W1986803904 @default.
- W2895580828 cites W1997488190 @default.
- W2895580828 cites W2002100254 @default.
- W2895580828 cites W2004504208 @default.
- W2895580828 cites W2017351567 @default.
- W2895580828 cites W2033322820 @default.
- W2895580828 cites W2033654985 @default.
- W2895580828 cites W2037586600 @default.
- W2895580828 cites W2040746003 @default.
- W2895580828 cites W2046229956 @default.
- W2895580828 cites W2090215813 @default.
- W2895580828 cites W2092561987 @default.
- W2895580828 cites W2149796482 @default.
- W2895580828 cites W2166238168 @default.
- W2895580828 cites W2323446142 @default.
- W2895580828 cites W2434484123 @default.
- W2895580828 cites W2582114859 @default.
- W2895580828 cites W2592530688 @default.
- W2895580828 cites W2608180162 @default.
- W2895580828 cites W2801999717 @default.
- W2895580828 cites W2914740196 @default.
- W2895580828 cites W4237451578 @default.
- W2895580828 cites W4239824336 @default.
- W2895580828 cites W4256505462 @default.
- W2895580828 doi "https://doi.org/10.1155/2018/1487982" @default.
- W2895580828 hasPublicationYear "2018" @default.
- W2895580828 type Work @default.
- W2895580828 sameAs 2895580828 @default.
- W2895580828 citedByCount "15" @default.
- W2895580828 countsByYear W28955808282019 @default.
- W2895580828 countsByYear W28955808282020 @default.
- W2895580828 countsByYear W28955808282021 @default.
- W2895580828 countsByYear W28955808282022 @default.
- W2895580828 countsByYear W28955808282023 @default.
- W2895580828 crossrefType "journal-article" @default.
- W2895580828 hasAuthorship W2895580828A5003661609 @default.
- W2895580828 hasAuthorship W2895580828A5029520845 @default.
- W2895580828 hasBestOaLocation W28955808281 @default.
- W2895580828 hasConcept C11413529 @default.
- W2895580828 hasConcept C41008148 @default.
- W2895580828 hasConceptScore W2895580828C11413529 @default.
- W2895580828 hasConceptScore W2895580828C41008148 @default.
- W2895580828 hasLocation W28955808281 @default.
- W2895580828 hasOpenAccess W2895580828 @default.
- W2895580828 hasPrimaryLocation W28955808281 @default.
- W2895580828 hasRelatedWork W2003465964 @default.
- W2895580828 hasRelatedWork W2052122378 @default.
- W2895580828 hasRelatedWork W2053286651 @default.
- W2895580828 hasRelatedWork W2073681303 @default.
- W2895580828 hasRelatedWork W2317200988 @default.
- W2895580828 hasRelatedWork W2320807662 @default.
- W2895580828 hasRelatedWork W2544423928 @default.
- W2895580828 hasRelatedWork W2779362453 @default.
- W2895580828 hasRelatedWork W2181743346 @default.
- W2895580828 hasRelatedWork W2187401768 @default.
- W2895580828 hasVolume "2018" @default.
- W2895580828 isParatext "false" @default.
- W2895580828 isRetracted "false" @default.
- W2895580828 magId "2895580828" @default.
- W2895580828 workType "article" @default.