Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895581072> ?p ?o ?g. }
- W2895581072 endingPage "2339" @default.
- W2895581072 startingPage "2330" @default.
- W2895581072 abstract "Conventional methods for distributed monitoring commonly assume that complete process measurements are available. However, the problem of missing data is often encountered in the monitoring of large-scale multiunit processes. This paper proposes an approach based on a neighborhood variational Bayesian principal component analysis (NVBPCA) and canonical correlation analysis (CCA) for the efficient distributed monitoring of multiunit processes in the presence of missing data. Missing observations for a local unit are reconstructed through NVBPCA by considering information from both local and neighboring units. A CCA-based local monitor, which identifies the status of the local unit and the type of a detected fault using information from both the local and neighboring units, is then developed. The NVBPCA-CCA approach has a better performance since its missing data handling and local monitor construction consider information from both the local and neighboring units. The efficiency of the proposed monitoring method is demonstrated through its application in a numerical example and an industrial tail gas treatment process." @default.
- W2895581072 created "2018-10-12" @default.
- W2895581072 creator A5000809799 @default.
- W2895581072 creator A5033312589 @default.
- W2895581072 creator A5071540194 @default.
- W2895581072 date "2019-11-01" @default.
- W2895581072 modified "2023-10-18" @default.
- W2895581072 title "Neighborhood Variational Bayesian Multivariate Analysis for Distributed Process Monitoring With Missing Data" @default.
- W2895581072 cites W1597576211 @default.
- W2895581072 cites W1970461315 @default.
- W2895581072 cites W1978994389 @default.
- W2895581072 cites W2050773700 @default.
- W2895581072 cites W2066102264 @default.
- W2895581072 cites W2102832680 @default.
- W2895581072 cites W2147703419 @default.
- W2895581072 cites W2201427885 @default.
- W2895581072 cites W2217088832 @default.
- W2895581072 cites W2316093926 @default.
- W2895581072 cites W2463821062 @default.
- W2895581072 cites W2494112937 @default.
- W2895581072 cites W2514088303 @default.
- W2895581072 cites W2580937131 @default.
- W2895581072 cites W2598325563 @default.
- W2895581072 cites W2608273225 @default.
- W2895581072 cites W2610267073 @default.
- W2895581072 cites W2739296899 @default.
- W2895581072 cites W2741385306 @default.
- W2895581072 cites W2757109865 @default.
- W2895581072 cites W2765753922 @default.
- W2895581072 cites W2765774435 @default.
- W2895581072 cites W2774720381 @default.
- W2895581072 cites W2775432693 @default.
- W2895581072 cites W2790035102 @default.
- W2895581072 cites W2790678878 @default.
- W2895581072 cites W2887983432 @default.
- W2895581072 cites W2888588474 @default.
- W2895581072 cites W2891711161 @default.
- W2895581072 cites W2891737721 @default.
- W2895581072 cites W4245241719 @default.
- W2895581072 cites W4252635811 @default.
- W2895581072 doi "https://doi.org/10.1109/tcst.2018.2870570" @default.
- W2895581072 hasPublicationYear "2019" @default.
- W2895581072 type Work @default.
- W2895581072 sameAs 2895581072 @default.
- W2895581072 citedByCount "16" @default.
- W2895581072 countsByYear W28955810722019 @default.
- W2895581072 countsByYear W28955810722020 @default.
- W2895581072 countsByYear W28955810722021 @default.
- W2895581072 countsByYear W28955810722022 @default.
- W2895581072 countsByYear W28955810722023 @default.
- W2895581072 crossrefType "journal-article" @default.
- W2895581072 hasAuthorship W2895581072A5000809799 @default.
- W2895581072 hasAuthorship W2895581072A5033312589 @default.
- W2895581072 hasAuthorship W2895581072A5071540194 @default.
- W2895581072 hasConcept C107673813 @default.
- W2895581072 hasConcept C111919701 @default.
- W2895581072 hasConcept C119857082 @default.
- W2895581072 hasConcept C124101348 @default.
- W2895581072 hasConcept C152745839 @default.
- W2895581072 hasConcept C153874254 @default.
- W2895581072 hasConcept C154945302 @default.
- W2895581072 hasConcept C161584116 @default.
- W2895581072 hasConcept C172707124 @default.
- W2895581072 hasConcept C27438332 @default.
- W2895581072 hasConcept C41008148 @default.
- W2895581072 hasConcept C9357733 @default.
- W2895581072 hasConcept C98045186 @default.
- W2895581072 hasConceptScore W2895581072C107673813 @default.
- W2895581072 hasConceptScore W2895581072C111919701 @default.
- W2895581072 hasConceptScore W2895581072C119857082 @default.
- W2895581072 hasConceptScore W2895581072C124101348 @default.
- W2895581072 hasConceptScore W2895581072C152745839 @default.
- W2895581072 hasConceptScore W2895581072C153874254 @default.
- W2895581072 hasConceptScore W2895581072C154945302 @default.
- W2895581072 hasConceptScore W2895581072C161584116 @default.
- W2895581072 hasConceptScore W2895581072C172707124 @default.
- W2895581072 hasConceptScore W2895581072C27438332 @default.
- W2895581072 hasConceptScore W2895581072C41008148 @default.
- W2895581072 hasConceptScore W2895581072C9357733 @default.
- W2895581072 hasConceptScore W2895581072C98045186 @default.
- W2895581072 hasFunder F4320321001 @default.
- W2895581072 hasFunder F4320334593 @default.
- W2895581072 hasFunder F4320335785 @default.
- W2895581072 hasFunder F4320335787 @default.
- W2895581072 hasIssue "6" @default.
- W2895581072 hasLocation W28955810721 @default.
- W2895581072 hasOpenAccess W2895581072 @default.
- W2895581072 hasPrimaryLocation W28955810721 @default.
- W2895581072 hasRelatedWork W1531310768 @default.
- W2895581072 hasRelatedWork W1968213687 @default.
- W2895581072 hasRelatedWork W1974184024 @default.
- W2895581072 hasRelatedWork W2035082510 @default.
- W2895581072 hasRelatedWork W2035688221 @default.
- W2895581072 hasRelatedWork W2365419403 @default.
- W2895581072 hasRelatedWork W2391372548 @default.
- W2895581072 hasRelatedWork W3091952034 @default.
- W2895581072 hasRelatedWork W3108512236 @default.
- W2895581072 hasRelatedWork W2100290150 @default.