Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895586251> ?p ?o ?g. }
- W2895586251 endingPage "441" @default.
- W2895586251 startingPage "431" @default.
- W2895586251 abstract "Long noncoding RNAs (lncRNAs) participate extensively in biological processes of various cancers. The majority of these transcripts are uniquely expressed in differentiated tissues or specific cancer types. lncRNAs are aberrantly expressed in gliomas and exert diverse functions. In this article, we provided an overview of how lncRNAs regulate cellular processes in glioma, enumerated the lncRNAs that may act as glioma biomarkers, and showed their potential clinical implications. Long noncoding RNAs (lncRNAs) participate extensively in biological processes of various cancers. The majority of these transcripts are uniquely expressed in differentiated tissues or specific cancer types. lncRNAs are aberrantly expressed in gliomas and exert diverse functions. In this article, we provided an overview of how lncRNAs regulate cellular processes in glioma, enumerated the lncRNAs that may act as glioma biomarkers, and showed their potential clinical implications. Glioma is one of the most common primary intracranial tumors. According to the cellular origin, gliomas are now classified into histological subtypes, including diffuse astrocytic and oligodendroglial tumors, other astrocytic tumors (e.g., pilocytic astrocytoma and pleomorphic xanthoastrocytoma), ependymal tumors, and other gliomas (e.g., angiocentric glioma).1Louis D.N. Perry A. Reifenberger G. von Deimling A. Figarella-Branger D. Cavenee W.K. Ohgaki H. Wiestler O.D. Kleihues P. Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.Acta Neuropathol. 2016; 131: 803-820Crossref PubMed Scopus (9459) Google Scholar To evaluate the degree of malignancy, gliomas are categorized into grades I–IV within each histological subtype.1Louis D.N. Perry A. Reifenberger G. von Deimling A. Figarella-Branger D. Cavenee W.K. Ohgaki H. Wiestler O.D. Kleihues P. Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.Acta Neuropathol. 2016; 131: 803-820Crossref PubMed Scopus (9459) Google Scholar The World Health Organization (WHO) grade IV astrocytoma, glioblastoma multiform (GBM), is one of the most malignant gliomas in adults. Despite the advantage of current therapy combining surgery, antineoplastics, radiation, and tumor-treating fields (TT Fields), the prognosis of GBM patients remain poor, with a median survival of less than 2 years only.2Perry J.R. Laperriere N. O’Callaghan C.J. Brandes A.A. Menten J. Phillips C. Fay M. Nishikawa R. Cairncross J.G. Roa W. et al.Trial InvestigatorsShort-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma.N. Engl. J. Med. 2017; 376: 1027-1037Crossref PubMed Scopus (585) Google Scholar, 3Stupp R. Taillibert S. Kanner A.A. Kesari S. Steinberg D.M. Toms S.A. Taylor L.P. Lieberman F. Silvani A. Fink K.L. et al.Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial.JAMA. 2015; 314: 2535-2543Crossref PubMed Scopus (771) Google Scholar The 2016 WHO Classification of Tumors of the Central Nervous System1Louis D.N. Perry A. Reifenberger G. von Deimling A. Figarella-Branger D. Cavenee W.K. Ohgaki H. Wiestler O.D. Kleihues P. Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.Acta Neuropathol. 2016; 131: 803-820Crossref PubMed Scopus (9459) Google Scholar presented a major change that molecular parameters are used to establish brain tumor diagnoses, indicating that intensive investigations of glioma at cellular and molecular levels are urgently needed. The noncoding genome accounts for more than 98% of all sequences, and it regulates a wide variety of cellular processes and pathways in the developmental and pathological contexts.4Anastasiadou E. Jacob L.S. Slack F.J. Non-coding RNA networks in cancer.Nat. Rev. Cancer. 2018; 18: 5-18Crossref PubMed Scopus (1036) Google Scholar Noncoding RNAs longer than 200 nt are cataloged as long noncoding RNAs (lncRNAs). In the human genome, more than 28,000 distinct lncRNAs have been estimated by the Encyclopedia of DNA Elements (ENCODE) Project Consortium.5Tragante V. Moore J.H. Asselbergs F.W. The ENCODE project and perspectives on pathways.Genet. Epidemiol. 2014; 38: 275-280Crossref PubMed Scopus (34) Google Scholar The mechanisms of lncRNAs regulating gene expression are diverse and not yet fully understood.6Wang K.C. Chang H.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell. 2011; 43: 904-914Abstract Full Text Full Text PDF PubMed Scopus (3258) Google Scholar On the basis of genomic localization, lncRNAs can be classified into intronic lncRNAs, intergenic lncRNAs (lincRNAs), enhancer lncRNAs (elncRNAs), bidirectional lncRNAs, sense-overlapping lncRNAs, and antisense lncRNAs.7Bhan A. Soleimani M. Mandal S.S. Long Noncoding RNA and Cancer: A New Paradigm.Cancer Res. 2017; 77: 3965-3981Crossref PubMed Scopus (1648) Google Scholar The genomic localization of lncRNAs may indicate their potential targets or provide clues of their action modes. As well, the cellular localization of lncRNAs may determine their molecular mechanisms of regulating cellular processes. lncRNAs in the nucleus may interact with chromatin and affect transcriptional regulation and RNA processing,8Schmitt A.M. Chang H.Y. Long Noncoding RNAs in Cancer Pathways.Cancer Cell. 2016; 29: 452-463Abstract Full Text Full Text PDF PubMed Scopus (2188) Google Scholar, 9Batista P.J. Chang H.Y. Long noncoding RNAs: cellular address codes in development and disease.Cell. 2013; 152: 1298-1307Abstract Full Text Full Text PDF PubMed Scopus (1976) Google Scholar while lncRNAs in the cytoplasm can modulate mRNA stability and translation, interact with protein synthesis, and influence cellular signaling cascades.9Batista P.J. Chang H.Y. Long noncoding RNAs: cellular address codes in development and disease.Cell. 2013; 152: 1298-1307Abstract Full Text Full Text PDF PubMed Scopus (1976) Google Scholar Wang and Chang6Wang K.C. Chang H.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell. 2011; 43: 904-914Abstract Full Text Full Text PDF PubMed Scopus (3258) Google Scholar distilled the action modes of lncRNAs into four archetypes, as signals, decoys, guides, and scaffolds, providing a useful framework to understand the complex functions of lncRNAs. New lncRNAs are being discovered, and how they function as regulators is becoming diversified and more complex. lncRNAs are aberrantly expressed in cancers and closely interact with tumorigenesis, metastasis, and tumor stage.8Schmitt A.M. Chang H.Y. Long Noncoding RNAs in Cancer Pathways.Cancer Cell. 2016; 29: 452-463Abstract Full Text Full Text PDF PubMed Scopus (2188) Google Scholar, 10Iyer M.K. Niknafs Y.S. Malik R. Singhal U. Sahu A. Hosono Y. Barrette T.R. Prensner J.R. Evans J.R. Zhao S. et al.The landscape of long noncoding RNAs in the human transcriptome.Nat. Genet. 2015; 47: 199-208Crossref PubMed Scopus (1878) Google Scholar Cancer-associated lncRNAs can be organizationally classified and annotated based on the phenotypes of proliferation, growth suppression, motility, immortality, angiogenesis, and viability, which are proposed as the six hallmarks of cancer.11Hanahan D. Weinberg R.A. The hallmarks of cancer.Cell. 2000; 100: 57-70Abstract Full Text Full Text PDF PubMed Scopus (22312) Google Scholar Individual lncRNA may play multiple roles in different cancer phenotypes, while each of the six hallmarks of cancer is modulated by the activity of multiple lncRNAs.8Schmitt A.M. Chang H.Y. Long Noncoding RNAs in Cancer Pathways.Cancer Cell. 2016; 29: 452-463Abstract Full Text Full Text PDF PubMed Scopus (2188) Google Scholar lncRNAs are widely expressed in various cancers in a range of different patterns. Some of them exist in many cancers and some are cancer specific, some of them are detectable and correlate with prognostic features of cancers, and some of them act as oncogenes to promote tumorigenesis whereas others act as tumor suppressors.7Bhan A. Soleimani M. Mandal S.S. Long Noncoding RNA and Cancer: A New Paradigm.Cancer Res. 2017; 77: 3965-3981Crossref PubMed Scopus (1648) Google Scholar Given the great abundance and functional diversity in cellular processes, lncRNAs may provide a new foundation for developing diagnostic biomarkers and therapeutic targets for cancers.12Ling H. Fabbri M. Calin G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development.Nat. Rev. Drug Discov. 2013; 12: 847-865Crossref PubMed Scopus (1075) Google Scholar, 13Matsui M. Corey D.R. Non-coding RNAs as drug targets.Nat. Rev. Drug Discov. 2017; 16: 167-179Crossref PubMed Scopus (594) Google Scholar, 14Quinn J.J. Chang H.Y. Unique features of long non-coding RNA biogenesis and function.Nat. Rev. Genet. 2016; 17: 47-62Crossref PubMed Scopus (2302) Google Scholar In addition, targeting lncRNAs, such as hox transcript antisense intergenic RNA (HOTAIR),15Xue X. Yang Y.A. Zhang A. Fong K.W. Kim J. Song B. Li S. Zhao J.C. Yu J. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer.Oncogene. 2016; 35: 2746-2755Crossref PubMed Scopus (312) Google Scholar HOXA distal transcript antisense RNA (HOTTIP),16Li Z. Zhao L. Wang Q. Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway.Am. J. Transl. Res. 2016; 8: 2385-2393PubMed Google Scholar metastasis-associated lung adenocarcinoma transcript 1 (MALAT1),17Chen W. Xu X.K. Li J.L. Kong K.K. Li H. Chen C. He J. Wang F. Li P. Ge X.S. Li F.C. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression.Oncotarget. 2017; 8: 22783-22799Crossref PubMed Scopus (105) Google Scholar colorectal neoplasia differentially expressed (CRNDE),18Han P. Li J.W. Zhang B.M. Lv J.C. Li Y.M. Gu X.Y. Yu Z.W. Jia Y.H. Bai X.F. Li L. et al.The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling.Mol. Cancer. 2017; 16: 9Crossref PubMed Scopus (379) Google Scholar and so on, can attenuate chemoresistance and improve the therapeutic efficacy of antineoplastic agents. In this article, we examine the characteristics of lncRNAs expressed in glioma, highlight the examples of lncRNAs regulating glioma phenotypes, and discuss the lncRNAs that may become glioma biomarkers. lncRNAs regulate cellular signaling networks in a wide range in glioma. Herein we listed the lncRNAs that have been implicated in glioma research and described their functions. In Table 1, we give the details of how lncRNAs and their molecular partners or genomic targets participate in glioma phenotypes of proliferation, growth suppression, motility, viability, and angiogenesis.Table 1Examples of lncRNAs Participating in Glioma PhenotypesPhenotypelncRNAActivityMechanismReferenceProliferationMALAT1promote cell proliferationsponge miR-10123Li Z. Xu C. Ding B. Gao M. Wei X. Ji N. Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101.J. Neurooncol. 2017; 134: 19-28Crossref PubMed Scopus (59) Google Scholar, 24Fu Z. Luo W. Wang J. Peng T. Sun G. Shi J. Li Z. Zhang B. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma.Biochem. Biophys. Res. Commun. 2017; 492: 480-486Crossref PubMed Scopus (72) Google Scholarpromote GSC tumorigenesissuppress miR-129 and facilitate SOX2 expression25Xiong Z. Wang L. Wang Q. Yuan Y. LncRNA MALAT1/miR-129 axis promotes glioma tumorigenesis by targeting SOX2.J. Cell. Mol. Med. 2018; 22: 3929-3940Crossref PubMed Scopus (47) Google ScholarHOTAIRpromote cell growthbind to EZH227Zhang J.X. Han L. Bao Z.S. Wang Y.Y. Chen L.Y. Yan W. Yu S.Z. Pu P.Y. Liu N. You Y.P. et al.Chinese Glioma Cooperative GroupHOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma.Neuro-oncol. 2013; 15: 1595-1603Crossref PubMed Scopus (197) Google Scholar, 30Zhang K. Sun X. Zhou X. Han L. Chen L. Shi Z. Zhang A. Ye M. Wang Q. Liu C. et al.Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner.Oncotarget. 2015; 6: 537-546Crossref PubMed Scopus (192) Google Scholarinteract with miR-326/FGF1 pathway31Ke J. Yao Y.L. Zheng J. Wang P. Liu Y.H. Ma J. Li Z. Liu X.B. Li Z.Q. Wang Z.H. Xue Y.X. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326.Oncotarget. 2015; 6: 21934-21949Crossref PubMed Scopus (135) Google ScholarFOXM1-ASpromote GSC tumorigenesisfacilitate nuclear interaction of ALKBH5 and FOXM1 pre-mRNA35Zhang S. Zhao B.S. Zhou A. Lin K. Zheng S. Lu Z. Chen Y. Sulman E.P. Xie K. Bögler O. et al.m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.Cancer Cell. 2017; 31: 591-606.e6Abstract Full Text Full Text PDF PubMed Scopus (856) Google ScholarHOXA11-ASaffect cell cycle progressionregulate cell cycle proteins38Wang Q. Zhang J. Liu Y. Zhang W. Zhou J. Duan R. Pu P. Kang C. Han L. A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma.Cancer Lett. 2016; 373: 251-259Crossref PubMed Scopus (149) Google Scholarpromote tumorigenesissponge miR-140-5p39Cui Y. Yi L. Zhao J.Z. Jiang Y.G. Long Noncoding RNA HOXA11-AS Functions as miRNA Sponge to Promote the Glioma Tumorigenesis Through Targeting miR-140-5p.DNA Cell Biol. 2017; 36: 822-828Crossref PubMed Scopus (64) Google Scholarinteract with miR-214-3p/EZH2 axis40Xu C. He T. Li Z. Liu H. Ding B. Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells.Biomed. Pharmacother. 2017; 95: 1504-1513Crossref PubMed Scopus (64) Google Scholarsponge miR-124-3p41Yang J.X. Liu B. Yang B.Y. Meng Q. Long non-coding RNA homeobox (HOX) A11-AS promotes malignant progression of glioma by targeting miR-124-3p.Neoplasma. 2018; 65: 505-514Crossref PubMed Scopus (17) Google ScholarECONEXINpromote cell proliferationinteract with miR-411-5p/ TOP2A axis42Deguchi S. Katsushima K. Hatanaka A. Shinjo K. Ohka F. Wakabayashi T. Zong H. Natsume A. Kondo Y. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis.Oncogene. 2017; 36: 4629-4640Crossref PubMed Scopus (57) Google ScholarH19promote cell proliferationinteract with miR-675/CDK6 axis49Li C. Lei B. Huang S. Zheng M. Liu Z. Li Z. Deng Y. H19 derived microRNA-675 regulates cell proliferation and migration through CDK6 in glioma.Am. J. Transl. Res. 2015; 7: 1747-1764PubMed Google Scholarinteract with miR-140/iASPP axis52Zhao H. Peng R. Liu Q. Liu D. Du P. Yuan J. Peng G. Liao Y. The lncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP.Arch. Biochem. Biophys. 2016; 610: 1-7Crossref PubMed Scopus (72) Google Scholarreduce miR-15253Chen L. Wang Y. He J. Zhang C. Chen J. Shi D. Long non-coding RNA H19 promotes proliferation and invasion in human glioma cells by downregulating miR-152.Oncol. Res. 2018; (Published online February 8, 2018)https://doi.org/10.3727/096504018X15178768577951Crossref Scopus (38) Google ScholarXISTpromote cell proliferationinteract with miR-15255Yao Y. Ma J. Xue Y. Wang P. Li Z. Liu J. Chen L. Xi Z. Teng H. Wang Z. et al.Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152.Cancer Lett. 2015; 359: 75-86Crossref PubMed Scopus (301) Google Scholarinteract with miR-137/Rac1 axis57Wang Z. Yuan J. Li L. Yang Y. Xu X. Wang Y. Long non-coding RNA XIST exerts oncogenic functions in human glioma by targeting miR-137.Am. J. Transl. Res. 2017; 9: 1845-1855PubMed Google Scholarsponge miR-42958Cheng Z. Li Z. Ma K. Li X. Tian N. Duan J. Xiao X. Wang Y. Long Non-coding RNA XIST Promotes Glioma Tumorigenicity and Angiogenesis by Acting as a Molecular Sponge of miR-429.J. Cancer. 2017; 8: 4106-4116Crossref PubMed Scopus (102) Google ScholarCRNDEpromote cell growthinteract with P70S6K-mediated mTOR signaling61Wang Y. Wang Y. Li J. Zhang Y. Yin H. Han B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling.Cancer Lett. 2015; 367: 122-128Crossref PubMed Scopus (209) Google Scholarpromote GSC proliferationnegatively regulate miR-18662Zheng J. Li X.D. Wang P. Liu X.B. Xue Y.X. Hu Y. Li Z. Li Z.Q. Wang Z.H. Liu Y.H. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186.Oncotarget. 2015; 6: 25339-25355Crossref PubMed Scopus (118) Google Scholarpromote cell proliferationattenuate miR-384/PIWIL4/STAT3 axis63Zheng J. Liu X. Wang P. Xue Y. Ma J. Qu C. Liu Y. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis.Mol. Ther. 2016; 24: 1199-1215Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholarnegatively regulate miR-136-5p64Li D.X. Fei X.R. Dong Y.F. Cheng C.D. Yang Y. Deng X.F. Huang H.L. Niu W.X. Zhou C.X. Xia C.Y. Niu C.S. The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2.Oncotarget. 2017; 8: 88163-88178Crossref PubMed Scopus (61) Google ScholarNEAT1promote cell growthinteract with EGFR/NEAT1/EZH2/β-catenin69Chen Q. Cai J. Wang Q. Wang Y. Liu M. Yang J. Zhou J. Kang C. Li M. Jiang C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2.Clin. Cancer Res. 2018; 24: 684-695Crossref PubMed Scopus (218) Google Scholarinteract with miR-449b-5p/c-Met axis70Zhen L. Yun-Hui L. Hong-Yu D. Jun M. Yi-Long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis.Tumour Biol. 2016; 37: 673-683Crossref PubMed Scopus (133) Google Scholarpromote GSC proliferationinteract with microRNA let-7e71Gong W. Zheng J. Liu X. Ma J. Liu Y. Xue Y. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e.Oncotarget. 2016; 7: 62208-62223Crossref PubMed Scopus (79) Google Scholarpromote cell proliferationinteract with miR-132/SOX2 axis73Zhou K. Zhang C. Yao H. Zhang X. Zhou Y. Che Y. Huang Y. Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132.Mol. Cancer. 2018; 17: 105Crossref PubMed Scopus (145) Google ScholarHCP5promote cell proliferationinteract with HCP5-miR-139-RUNX1 feedback loop78Teng H. Wang P. Xue Y. Liu X. Ma J. Cai H. Xi Z. Li Z. Liu Y. Role of HCP5-miR-139-RUNX1 Feedback Loop in Regulating Malignant Behavior of Glioma Cells.Mol. Ther. 2016; 24: 1806-1822Abstract Full Text Full Text PDF PubMed Scopus (81) Google ScholarHIF1A-AS2promote GSC growthinteract with IGF2BP2 and DHX983Mineo M. Ricklefs F. Rooj A.K. Lyons S.M. Ivanov P. Ansari K.I. Nakano I. Chiocca E.A. Godlewski J. Bronisz A. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.Cell Rep. 2016; 15: 2500-2509Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholarlinc-POU3F3promote cell proliferationregulate POU3F3 expression87Guo H. Wu L. Yang Q. Ye M. Zhu X. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma.Gene. 2015; 554: 114-119Crossref PubMed Scopus (63) Google ScholarCASC2cpromote cell proliferationinteract with miR-10192Liu C. Sun Y. She X. Tu C. Cheng X. Wang L. Yu Z. Li P. Liu Q. Yang H. et al.CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis.Cell Death Dis. 2017; 8: e2639Crossref PubMed Scopus (25) Google ScholarHMMR-AS1promote cell proliferationregulate HMMR expression93Li J. Ji X. Wang H. Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma.Neoplasia. 2018; 20: 456-466Crossref PubMed Scopus (33) Google ScholarGrowth suppressionMALAT1inhibit cell proliferationinactivate ERK/MAPK signaling21Han Y. Wu Z. Wu T. Huang Y. Cheng Z. Li X. Sun T. Xie X. Zhou Y. Du Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling.Cell Death Dis. 2016; 7: e2123Crossref PubMed Scopus (175) Google Scholarsuppress tumor growthsuppress miR-155 expression and activate FBXW7 function22Cao S. Wang Y. Li J. Lv M. Niu H. Tian Y. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function.Am. J. Cancer Res. 2016; 6: 2561-2574PubMed Google ScholarHOTTIPinhibit cell proliferationdownregulate BRE36Xu L.M. Chen L. Li F. Zhang R. Li Z.Y. Chen F.F. Jiang X.D. Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE.J. Exp. Clin. Cancer Res. 2016; 35: 162Crossref PubMed Scopus (38) Google ScholarGAS5inhibit cell proliferationreduce miR-222 and increase bmf and Plexin C143Zhao X. Wang P. Liu J. Zheng J. Liu Y. Chen J. Xue Y. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222.Mol. Ther. 2015; 23: 1899-1911Abstract Full Text Full Text PDF PubMed Scopus (150) Google Scholarinhibit GSC proliferationinteract with miR-196a-5p/FOXO1 feedback loop44Zhao X. Liu Y. Zheng J. Liu X. Chen J. Liu L. Wang P. Xue Y. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop.Biochim Biophys Acta Mol Cell Res. 2017; 1864: 1605-1617Crossref PubMed Scopus (70) Google Scholarinhibit cell proliferationrepress miR-18a-5p45Liu Q. Yu W. Zhu S. Cheng K. Xu H. Lv Y. Long X. Ma L. Huang J. Sun S. Wang K. Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p.J. Cell. Physiol. 2018; (Published online August 4, 2018)https://doi.org/10.1002/jcp.26889Crossref Scopus (54) Google ScholarRAMP2-AS1suppress tumor growthinteract with NOTCH384Liu S. Mitra R. Zhao M.M. Fan W. Eischen C.M. Yin F. Zhao Z. The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development.Mol. Cancer Ther. 2016; 15: 2977-2986Crossref PubMed Scopus (46) Google ScholarCASC2ainhibit cell proliferationinteract with miR-2191Wang P. Liu Y.H. Yao Y.L. Li Z. Li Z.Q. Ma J. Xue Y.X. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21.Cell. Signal. 2015; 27: 275-282Crossref PubMed Scopus (182) Google ScholarMotilityMALAT1promote cell migrationinteract with non-canonical WNT signaling20Vassallo I. Zinn P. Lai M. Rajakannu P. Hamou M.F. Hegi M.E. WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1.Oncogene. 2016; 35: 12-21Crossref PubMed Scopus (103) Google Scholarinhibit cell invasiondownregulate MMP221Han Y. Wu Z. Wu T. Huang Y. Cheng Z. Li X. Sun T. Xie X. Zhou Y. Du Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling.Cell Death Dis. 2016; 7: e2123Crossref PubMed Scopus (175) Google ScholarHOXA11-ASpromote cell migration and invasioninteract with miR-214-3p/EZH2 axis40Xu C. He T. Li Z. Liu H. Ding B. Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells.Biomed. Pharmacother. 2017; 95: 1504-1513Crossref PubMed Scopus (64) Google Scholarsponge miR-124-3p41Yang J.X. Liu B. Yang B.Y. Meng Q. Long non-coding RNA homeobox (HOX) A11-AS promotes malignant progression of glioma by targeting miR-124-3p.Neoplasma. 2018; 65: 505-514Crossref PubMed Scopus (17) Google ScholarGAS5inhibit cell migration and invasionreduce miR-222 and increase bmf and Plexin C143Zhao X. Wang P. Liu J. Zheng J. Liu Y. Chen J. Xue Y. Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222.Mol. Ther. 2015; 23: 1899-1911Abstract Full Text Full Text PDF PubMed Scopus (150) Google Scholarinhibit GSC migration and invasioninteract with miR-196a-5p/FOXO1 feedback loop44Zhao X. Liu Y. Zheng J. Liu X. Chen J. Liu L. Wang P. Xue Y. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop.Biochim Biophys Acta Mol Cell Res. 2017; 1864: 1605-1617Crossref PubMed Scopus (70) Google Scholarinhibit cell migration and invasionrepress miR-18a-5p45Liu Q. Yu W. Zhu S. Cheng K. Xu H. Lv Y. Long X. Ma L. Huang J. Sun S. Wang K. Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p.J. Cell. Physiol. 2018; (Published online August 4, 2018)https://doi.org/10.1002/jcp.26889Crossref Scopus (54) Google ScholarH19promote cell migration and invasionderive miR-67549Li C. Lei B. Huang S. Zheng M. Liu Z. Li Z. Deng Y. H19 derived microRNA-675 regulates cell proliferation and migration through CDK6 in glioma.Am. J. Transl. Res. 2015; 7: 1747-1764PubMed Google Scholar, 50Shi Y. Wang Y. Luan W. Wang P. Tao T. Zhang J. Qian J. Liu N. You Y. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675.PLoS ONE. 2014; 9: e86295Crossref PubMed Scopus (267) Google Scholarinteract with miR-140/iASPP axis52Zhao H. Peng R. Liu Q. Liu D. Du P. Yuan J. Peng G. Liao Y. The lncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP.Arch. Biochem. Biophys. 2016; 610: 1-7Crossref PubMed Scopus (72) Google Scholarreduce miR-15253Chen L. Wang Y. He J. Zhang C. Chen J. Shi D. Long non-coding RNA H19 promotes proliferation and invasion in human glioma cells by downregulating miR-152.Oncol. Res. 2018; (Published online February 8, 2018)https://doi.org/10.3727/096504018X15178768577951Crossref Scopus (38) Google ScholarXISTpromote cell migration and invasioninteract with miR-15255Yao Y. Ma J. Xue Y. Wang P. Li Z. Liu J. Chen L. Xi Z. Teng H. Wang Z. et al.Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152.Cancer Lett. 2015; 359: 75-86Crossref PubMed Scopus (301) Google ScholarCRNDEpromote cell migration and invasioninteract with P70S6K-mediated mTOR signaling61Wang Y. Wang Y. Li J. Zhang Y. Yin H. Han B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling.Cancer Lett. 2015; 367: 122-128Crossref PubMed Scopus (209) Google Scholarpromote GSC migration and invasionnegatively regulate miR-18662Zheng J. Li X.D. Wang P. Liu X.B. Xue Y.X. Hu Y. Li Z. Li Z.Q. Wang Z.H. Liu Y.H. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186.Oncotarget. 2015; 6: 25339-25355Crossref PubMed Scopus (118) Google Scholarpromote cell migration and invasionattenuate miR-384/PIWIL4/STAT3 axis63Zheng J. Liu X. Wang P. Xue Y. Ma J. Qu C. Liu Y. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis.Mol. Ther. 2016; 24: 1199-1215Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholarnegatively regulate miR-136-5p64Li D.X. Fei X.R. Dong Y.F. Cheng C.D. Yang Y. Deng X.F. Huang H.L. Niu W.X. Zhou C.X. Xia C.Y. Niu C.S. The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2.Oncotarget. 2017; 8: 88163-88178Crossref PubMed Scopus (61) Google ScholarNEAT1promote cell invasioninteract with EGFR/NEAT1/EZH2/β-catenin69Chen Q. Cai J. Wang Q. Wang Y. Liu M. Yang J. Zhou J. Kang C. Li M. Jiang C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2.Clin. Cancer Res. 2018; 24: 684-695Crossref PubMed Scopus (218) Google Scholarinteract with miR-449b-5p/c-Met axis70Zhen L. Yun-Hui L. Hong-Yu D. Jun M. Yi-Long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis.Tumour Biol. 2016; 37: 673-683Crossref PubMed Scopus (133) Google Scholarpromote GSC migration and invasioninteract with microRNA let-7e71Gong W. Zheng J. Liu X. Ma J. Liu Y. Xue Y. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e.Oncotarget. 2016; 7: 62208-62223Crossref PubMed Scopus (79) Google Scholarpromote cell migration and invasioninteract with miR-132/SOX2 axis73Zhou K. Zhang C. Yao H. Zhang X. Zhou Y. Che Y. Huang Y. Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132.Mol. Cancer. 2018; 17: 105Crossref PubMed Scopus (145) Google ScholarHCP5promote cell migration and invasioninteract with HCP5/miR-139/RUNX1 feedback loop78Teng H. Wang P. Xue Y. Liu X. Ma J. Cai H. Xi Z. Li Z. Liu Y. Role of HCP5-miR-139-RUNX1 Feedback Loop in Regulating Malignant Behavior of Glioma Cells.Mol. Ther. 2016; 24: 1806-1822Abstract Full Text Full Text PDF PubMed Scopus (81) Google ScholarCASC2ainhibit cell migration and invasioninteract with miR-2191Wang P. Liu Y.H. Yao Y.L. Li Z. Li Z.Q. Ma J. Xue Y.X. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21.Cell. Signal. 2015; 27: 275-282Crossref PubMed Scopus (182) Google ScholarCASC2cpromote cell migration and invasioninteract with miR-10192Liu C. Sun Y. She X. Tu C. Cheng X. Wang L. Yu Z. Li P. Liu Q. Yang H. et al.CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis.Cell Death Dis. 2017; 8: e2639Crossref PubMed Scopus (25) Google ScholarHMMR-AS1promote cell migration and invasionregulate HMMR" @default.
- W2895586251 created "2018-10-12" @default.
- W2895586251 creator A5038611702 @default.
- W2895586251 creator A5039296185 @default.
- W2895586251 creator A5041100767 @default.
- W2895586251 creator A5078281605 @default.
- W2895586251 date "2018-12-01" @default.
- W2895586251 modified "2023-10-17" @default.
- W2895586251 title "Targeting Long Noncoding RNA in Glioma: A Pathway Perspective" @default.
- W2895586251 cites W1500090790 @default.
- W2895586251 cites W1608745727 @default.
- W2895586251 cites W1716948420 @default.
- W2895586251 cites W1920615368 @default.
- W2895586251 cites W1940860699 @default.
- W2895586251 cites W1970741980 @default.
- W2895586251 cites W1974350437 @default.
- W2895586251 cites W1980153364 @default.
- W2895586251 cites W1988633298 @default.
- W2895586251 cites W2008041603 @default.
- W2895586251 cites W2014813785 @default.
- W2895586251 cites W2019098479 @default.
- W2895586251 cites W2019289887 @default.
- W2895586251 cites W2029919331 @default.
- W2895586251 cites W2030017878 @default.
- W2895586251 cites W2034269086 @default.
- W2895586251 cites W2036671650 @default.
- W2895586251 cites W2045540968 @default.
- W2895586251 cites W2051282896 @default.
- W2895586251 cites W2071271349 @default.
- W2895586251 cites W2073278656 @default.
- W2895586251 cites W2074373608 @default.
- W2895586251 cites W2089990689 @default.
- W2895586251 cites W2095420558 @default.
- W2895586251 cites W2109093191 @default.
- W2895586251 cites W2111119573 @default.
- W2895586251 cites W2124826140 @default.
- W2895586251 cites W2125569948 @default.
- W2895586251 cites W2126059322 @default.
- W2895586251 cites W2139709116 @default.
- W2895586251 cites W2163169932 @default.
- W2895586251 cites W2168497087 @default.
- W2895586251 cites W2168521098 @default.
- W2895586251 cites W2196110459 @default.
- W2895586251 cites W2198153867 @default.
- W2895586251 cites W2205491921 @default.
- W2895586251 cites W2207064026 @default.
- W2895586251 cites W2220034225 @default.
- W2895586251 cites W2271182909 @default.
- W2895586251 cites W2287472947 @default.
- W2895586251 cites W2300041181 @default.
- W2895586251 cites W2310344966 @default.
- W2895586251 cites W2316868006 @default.
- W2895586251 cites W2324136085 @default.
- W2895586251 cites W2325777483 @default.
- W2895586251 cites W2335029242 @default.
- W2895586251 cites W2366536035 @default.
- W2895586251 cites W2419388116 @default.
- W2895586251 cites W2476629295 @default.
- W2895586251 cites W2502698579 @default.
- W2895586251 cites W2511206720 @default.
- W2895586251 cites W2517475579 @default.
- W2895586251 cites W2523765634 @default.
- W2895586251 cites W2530638037 @default.
- W2895586251 cites W2545692517 @default.
- W2895586251 cites W2550451908 @default.
- W2895586251 cites W2577432673 @default.
- W2895586251 cites W2587271630 @default.
- W2895586251 cites W2588834106 @default.
- W2895586251 cites W2593410582 @default.
- W2895586251 cites W2595756570 @default.
- W2895586251 cites W2599750069 @default.
- W2895586251 cites W2600626962 @default.
- W2895586251 cites W2604638977 @default.
- W2895586251 cites W2620398233 @default.
- W2895586251 cites W2724618339 @default.
- W2895586251 cites W2729821970 @default.
- W2895586251 cites W2731476752 @default.
- W2895586251 cites W2735687500 @default.
- W2895586251 cites W2745431018 @default.
- W2895586251 cites W2749789857 @default.
- W2895586251 cites W2749896527 @default.
- W2895586251 cites W2751592494 @default.
- W2895586251 cites W2753949488 @default.
- W2895586251 cites W2757680842 @default.
- W2895586251 cites W2760873274 @default.
- W2895586251 cites W2768096340 @default.
- W2895586251 cites W2769373441 @default.
- W2895586251 cites W2770894379 @default.
- W2895586251 cites W2778429189 @default.
- W2895586251 cites W2784151783 @default.
- W2895586251 cites W2789326851 @default.
- W2895586251 cites W2792535674 @default.
- W2895586251 cites W2793711924 @default.
- W2895586251 cites W2794013545 @default.
- W2895586251 cites W2804647312 @default.
- W2895586251 cites W2806637070 @default.
- W2895586251 cites W2883978878 @default.
- W2895586251 cites W2885229193 @default.