Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895590610> ?p ?o ?g. }
- W2895590610 abstract "We propose two novel samplers to generate high-quality samples from a given (un-normalized) probability density. Motivated by the success of generative adversarial networks, we construct our samplers using deep neural networks that transform a reference distribution to the target distribution. Training schemes are developed to minimize two variations of the Stein discrepancy, which is designed to work with un-normalized densities. Once trained, our samplers are able to generate samples instantaneously. We show that the proposed methods are theoretically sound and experience fewer convergence issues compared with traditional sampling approaches according to our empirical studies." @default.
- W2895590610 created "2018-10-12" @default.
- W2895590610 creator A5040717619 @default.
- W2895590610 creator A5042490620 @default.
- W2895590610 creator A5075942874 @default.
- W2895590610 creator A5078480546 @default.
- W2895590610 creator A5082974417 @default.
- W2895590610 creator A5084382353 @default.
- W2895590610 date "2018-10-08" @default.
- W2895590610 modified "2023-09-27" @default.
- W2895590610 title "Stein Neural Sampler." @default.
- W2895590610 cites W1487641199 @default.
- W2895590610 cites W1583912456 @default.
- W2895590610 cites W1971573979 @default.
- W2895590610 cites W2049882758 @default.
- W2895590610 cites W2099471712 @default.
- W2895590610 cites W2103012681 @default.
- W2895590610 cites W2111698756 @default.
- W2895590610 cites W2135498906 @default.
- W2895590610 cites W2150807068 @default.
- W2895590610 cites W2167433878 @default.
- W2895590610 cites W2173520492 @default.
- W2895590610 cites W2212660284 @default.
- W2895590610 cites W2275150912 @default.
- W2895590610 cites W2328111639 @default.
- W2895590610 cites W2409550820 @default.
- W2895590610 cites W2418046303 @default.
- W2895590610 cites W2433379750 @default.
- W2895590610 cites W2441221256 @default.
- W2895590610 cites W2478027467 @default.
- W2895590610 cites W2494509117 @default.
- W2895590610 cites W2554314924 @default.
- W2895590610 cites W2557046619 @default.
- W2895590610 cites W2592105405 @default.
- W2895590610 cites W2592651140 @default.
- W2895590610 cites W2777138330 @default.
- W2895590610 cites W2919115771 @default.
- W2895590610 cites W2951004968 @default.
- W2895590610 cites W2952716587 @default.
- W2895590610 cites W2952745707 @default.
- W2895590610 cites W2962879692 @default.
- W2895590610 cites W2963446085 @default.
- W2895590610 cites W2963457235 @default.
- W2895590610 cites W2963477172 @default.
- W2895590610 cites W2963565380 @default.
- W2895590610 cites W2963956018 @default.
- W2895590610 cites W2964250748 @default.
- W2895590610 cites W299440670 @default.
- W2895590610 cites W3037643135 @default.
- W2895590610 hasPublicationYear "2018" @default.
- W2895590610 type Work @default.
- W2895590610 sameAs 2895590610 @default.
- W2895590610 citedByCount "17" @default.
- W2895590610 countsByYear W28955906102019 @default.
- W2895590610 countsByYear W28955906102020 @default.
- W2895590610 countsByYear W28955906102021 @default.
- W2895590610 crossrefType "posted-content" @default.
- W2895590610 hasAuthorship W2895590610A5040717619 @default.
- W2895590610 hasAuthorship W2895590610A5042490620 @default.
- W2895590610 hasAuthorship W2895590610A5075942874 @default.
- W2895590610 hasAuthorship W2895590610A5078480546 @default.
- W2895590610 hasAuthorship W2895590610A5082974417 @default.
- W2895590610 hasAuthorship W2895590610A5084382353 @default.
- W2895590610 hasConcept C105795698 @default.
- W2895590610 hasConcept C106131492 @default.
- W2895590610 hasConcept C110121322 @default.
- W2895590610 hasConcept C119857082 @default.
- W2895590610 hasConcept C134306372 @default.
- W2895590610 hasConcept C140779682 @default.
- W2895590610 hasConcept C149441793 @default.
- W2895590610 hasConcept C154945302 @default.
- W2895590610 hasConcept C162324750 @default.
- W2895590610 hasConcept C199360897 @default.
- W2895590610 hasConcept C2777303404 @default.
- W2895590610 hasConcept C2780801425 @default.
- W2895590610 hasConcept C2984842247 @default.
- W2895590610 hasConcept C31972630 @default.
- W2895590610 hasConcept C33923547 @default.
- W2895590610 hasConcept C39890363 @default.
- W2895590610 hasConcept C41008148 @default.
- W2895590610 hasConcept C50522688 @default.
- W2895590610 hasConcept C50644808 @default.
- W2895590610 hasConceptScore W2895590610C105795698 @default.
- W2895590610 hasConceptScore W2895590610C106131492 @default.
- W2895590610 hasConceptScore W2895590610C110121322 @default.
- W2895590610 hasConceptScore W2895590610C119857082 @default.
- W2895590610 hasConceptScore W2895590610C134306372 @default.
- W2895590610 hasConceptScore W2895590610C140779682 @default.
- W2895590610 hasConceptScore W2895590610C149441793 @default.
- W2895590610 hasConceptScore W2895590610C154945302 @default.
- W2895590610 hasConceptScore W2895590610C162324750 @default.
- W2895590610 hasConceptScore W2895590610C199360897 @default.
- W2895590610 hasConceptScore W2895590610C2777303404 @default.
- W2895590610 hasConceptScore W2895590610C2780801425 @default.
- W2895590610 hasConceptScore W2895590610C2984842247 @default.
- W2895590610 hasConceptScore W2895590610C31972630 @default.
- W2895590610 hasConceptScore W2895590610C33923547 @default.
- W2895590610 hasConceptScore W2895590610C39890363 @default.
- W2895590610 hasConceptScore W2895590610C41008148 @default.
- W2895590610 hasConceptScore W2895590610C50522688 @default.