Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895598278> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2895598278 endingPage "e0204155" @default.
- W2895598278 startingPage "e0204155" @default.
- W2895598278 abstract "Deep learning (DL) based solutions have been proposed for interpretation of several imaging modalities including radiography, CT, and MR. For chest radiographs, DL algorithms have found success in the evaluation of abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibrosis, pneumoconiosis, and location of peripherally inserted central catheters. Chest radiography represents the most commonly performed radiological test for a multitude of non-emergent and emergent clinical indications. This study aims to assess accuracy of deep learning (DL) algorithm for detection of abnormalities on routine frontal chest radiographs (CXR), and assessment of stability or change in findings over serial radiographs.We processed 874 de-identified frontal CXR from 724 adult patients (> 18 years) with DL (Qure AI). Scores and prediction statistics from DL were generated and recorded for the presence of pulmonary opacities, pleural effusions, hilar prominence, and enlarged cardiac silhouette. To establish a standard of reference (SOR), two thoracic radiologists assessed all CXR for these abnormalities. Four other radiologists (test radiologists), unaware of SOR and DL findings, independently assessed the presence of radiographic abnormalities. A total 724 radiographs were assessed for detection of findings. A subset of 150 radiographs with follow up examinations was used to asses change over time. Data were analyzed with receiver operating characteristics analyses and post-hoc power analysis.About 42% (305/ 724) CXR had no findings according to SOR; single and multiple abnormalities were seen in 23% (168/724) and 35% (251/724) of CXR. There was no statistical difference between DL and SOR for all abnormalities (p = 0.2-0.8). The area under the curve (AUC) for DL and test radiologists ranged between 0.837-0.929 and 0.693-0.923, respectively. DL had lowest AUC (0.758) for assessing changes in pulmonary opacities over follow up CXR. Presence of chest wall implanted devices negatively affected the accuracy of DL algorithm for evaluation of pulmonary and hilar abnormalities.DL algorithm can aid in interpretation of CXR findings and their stability over follow up CXR. However, in its present version, it is unlikely to replace radiologists due to its limited specificity for categorizing specific findings." @default.
- W2895598278 created "2018-10-12" @default.
- W2895598278 creator A5019596851 @default.
- W2895598278 creator A5036830189 @default.
- W2895598278 creator A5037910067 @default.
- W2895598278 creator A5038114239 @default.
- W2895598278 creator A5043464093 @default.
- W2895598278 creator A5044854091 @default.
- W2895598278 creator A5052578824 @default.
- W2895598278 creator A5058858503 @default.
- W2895598278 creator A5079354352 @default.
- W2895598278 creator A5087606400 @default.
- W2895598278 creator A5087649963 @default.
- W2895598278 date "2018-10-04" @default.
- W2895598278 modified "2023-10-05" @default.
- W2895598278 title "Deep learning in chest radiography: Detection of findings and presence of change" @default.
- W2895598278 cites W1969427484 @default.
- W2895598278 cites W1988355023 @default.
- W2895598278 cites W1994338276 @default.
- W2895598278 cites W1997458394 @default.
- W2895598278 cites W2069151051 @default.
- W2895598278 cites W2134649744 @default.
- W2895598278 cites W2151460114 @default.
- W2895598278 cites W2319324829 @default.
- W2895598278 cites W2342469653 @default.
- W2895598278 cites W2514505281 @default.
- W2895598278 cites W2608231518 @default.
- W2895598278 cites W2793357426 @default.
- W2895598278 cites W29574229 @default.
- W2895598278 cites W4232097126 @default.
- W2895598278 doi "https://doi.org/10.1371/journal.pone.0204155" @default.
- W2895598278 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6171827" @default.
- W2895598278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30286097" @default.
- W2895598278 hasPublicationYear "2018" @default.
- W2895598278 type Work @default.
- W2895598278 sameAs 2895598278 @default.
- W2895598278 citedByCount "125" @default.
- W2895598278 countsByYear W28955982782019 @default.
- W2895598278 countsByYear W28955982782020 @default.
- W2895598278 countsByYear W28955982782021 @default.
- W2895598278 countsByYear W28955982782022 @default.
- W2895598278 countsByYear W28955982782023 @default.
- W2895598278 crossrefType "journal-article" @default.
- W2895598278 hasAuthorship W2895598278A5019596851 @default.
- W2895598278 hasAuthorship W2895598278A5036830189 @default.
- W2895598278 hasAuthorship W2895598278A5037910067 @default.
- W2895598278 hasAuthorship W2895598278A5038114239 @default.
- W2895598278 hasAuthorship W2895598278A5043464093 @default.
- W2895598278 hasAuthorship W2895598278A5044854091 @default.
- W2895598278 hasAuthorship W2895598278A5052578824 @default.
- W2895598278 hasAuthorship W2895598278A5058858503 @default.
- W2895598278 hasAuthorship W2895598278A5079354352 @default.
- W2895598278 hasAuthorship W2895598278A5087606400 @default.
- W2895598278 hasAuthorship W2895598278A5087649963 @default.
- W2895598278 hasBestOaLocation W28955982781 @default.
- W2895598278 hasConcept C126322002 @default.
- W2895598278 hasConcept C126838900 @default.
- W2895598278 hasConcept C190892606 @default.
- W2895598278 hasConcept C2781137159 @default.
- W2895598278 hasConcept C2989005 @default.
- W2895598278 hasConcept C36454342 @default.
- W2895598278 hasConcept C58471807 @default.
- W2895598278 hasConcept C71924100 @default.
- W2895598278 hasConceptScore W2895598278C126322002 @default.
- W2895598278 hasConceptScore W2895598278C126838900 @default.
- W2895598278 hasConceptScore W2895598278C190892606 @default.
- W2895598278 hasConceptScore W2895598278C2781137159 @default.
- W2895598278 hasConceptScore W2895598278C2989005 @default.
- W2895598278 hasConceptScore W2895598278C36454342 @default.
- W2895598278 hasConceptScore W2895598278C58471807 @default.
- W2895598278 hasConceptScore W2895598278C71924100 @default.
- W2895598278 hasIssue "10" @default.
- W2895598278 hasLocation W28955982781 @default.
- W2895598278 hasLocation W28955982782 @default.
- W2895598278 hasLocation W28955982783 @default.
- W2895598278 hasLocation W28955982784 @default.
- W2895598278 hasOpenAccess W2895598278 @default.
- W2895598278 hasPrimaryLocation W28955982781 @default.
- W2895598278 hasRelatedWork W109571580 @default.
- W2895598278 hasRelatedWork W1968884670 @default.
- W2895598278 hasRelatedWork W1981227160 @default.
- W2895598278 hasRelatedWork W2051599482 @default.
- W2895598278 hasRelatedWork W2363638923 @default.
- W2895598278 hasRelatedWork W2401316929 @default.
- W2895598278 hasRelatedWork W3008635906 @default.
- W2895598278 hasRelatedWork W4313352150 @default.
- W2895598278 hasRelatedWork W86886858 @default.
- W2895598278 hasRelatedWork W3194336637 @default.
- W2895598278 hasVolume "13" @default.
- W2895598278 isParatext "false" @default.
- W2895598278 isRetracted "false" @default.
- W2895598278 magId "2895598278" @default.
- W2895598278 workType "article" @default.