Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895630341> ?p ?o ?g. }
- W2895630341 abstract "The identification of causal relationships between random variables from large-scale observational data using directed acyclic graphs (DAG) is highly challenging. We propose a new mixed-effects structural equation model (mSEM) framework to estimate subject-specific DAGs, where we represent joint distribution of random variables in the DAG as a set of structural causal equations with mixed effects. The directed edges between nodes depend on observed exogenous covariates on each of the individual and unobserved latent variables. The strength of the connection is decomposed into a fixed-effect term representing the average causal effect given the covariates and a random effect term representing the latent causal effect due to unobserved pathways. The advantage of such decomposition is to capture essential asymmetric structural information and heterogeneity between DAGs in order to allow for the identification of causal structure with observational data. In addition, by pooling information across subject-specific DAGs, we can identify causal structure with a high probability and estimate subject-specific networks with a high precision. We propose a penalized likelihood-based approach to handle multi-dimensionality of the DAG model. We propose a fast, iterative computational algorithm, DAG-MM, to estimate parameters in mSEM and achieve desirable sparsity by hard-thresholding the edges. We theoretically prove the identifiability of mSEM. Using simulations and an application to protein signaling data, we show substantially improved performances when compared to existing methods and consistent results with a network estimated from interventional data. Lastly, we identify gray matter atrophy networks in regions of brain from patients with Huntington's disease and corroborate our findings using white matter connectivity data collected from an independent study." @default.
- W2895630341 created "2018-10-12" @default.
- W2895630341 creator A5004911280 @default.
- W2895630341 creator A5036614045 @default.
- W2895630341 creator A5041885603 @default.
- W2895630341 creator A5050634458 @default.
- W2895630341 creator A5056322441 @default.
- W2895630341 creator A5063135878 @default.
- W2895630341 creator A5087798220 @default.
- W2895630341 date "2018-10-02" @default.
- W2895630341 modified "2023-10-17" @default.
- W2895630341 title "Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data" @default.
- W2895630341 cites W1179800764 @default.
- W2895630341 cites W1517993545 @default.
- W2895630341 cites W1840615978 @default.
- W2895630341 cites W1972627370 @default.
- W2895630341 cites W1975807959 @default.
- W2895630341 cites W1983537704 @default.
- W2895630341 cites W2018747370 @default.
- W2895630341 cites W2020117714 @default.
- W2895630341 cites W2030574287 @default.
- W2895630341 cites W2032259302 @default.
- W2895630341 cites W2061564920 @default.
- W2895630341 cites W2073307618 @default.
- W2895630341 cites W2114151173 @default.
- W2895630341 cites W2115984935 @default.
- W2895630341 cites W2121642311 @default.
- W2895630341 cites W2124068344 @default.
- W2895630341 cites W2127491240 @default.
- W2895630341 cites W2138905229 @default.
- W2895630341 cites W2143372885 @default.
- W2895630341 cites W2143891888 @default.
- W2895630341 cites W2148289138 @default.
- W2895630341 cites W2164675092 @default.
- W2895630341 cites W2181175820 @default.
- W2895630341 cites W2274495055 @default.
- W2895630341 cites W2322659453 @default.
- W2895630341 cites W2460828264 @default.
- W2895630341 cites W2467831893 @default.
- W2895630341 cites W2605884509 @default.
- W2895630341 cites W3098834468 @default.
- W2895630341 cites W3099110849 @default.
- W2895630341 doi "https://doi.org/10.3389/fgene.2018.00430" @default.
- W2895630341 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6176748" @default.
- W2895630341 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30333854" @default.
- W2895630341 hasPublicationYear "2018" @default.
- W2895630341 type Work @default.
- W2895630341 sameAs 2895630341 @default.
- W2895630341 citedByCount "3" @default.
- W2895630341 countsByYear W28956303412019 @default.
- W2895630341 countsByYear W28956303412021 @default.
- W2895630341 countsByYear W28956303412023 @default.
- W2895630341 crossrefType "journal-article" @default.
- W2895630341 hasAuthorship W2895630341A5004911280 @default.
- W2895630341 hasAuthorship W2895630341A5036614045 @default.
- W2895630341 hasAuthorship W2895630341A5041885603 @default.
- W2895630341 hasAuthorship W2895630341A5050634458 @default.
- W2895630341 hasAuthorship W2895630341A5056322441 @default.
- W2895630341 hasAuthorship W2895630341A5063135878 @default.
- W2895630341 hasAuthorship W2895630341A5087798220 @default.
- W2895630341 hasBestOaLocation W28956303411 @default.
- W2895630341 hasConcept C105795698 @default.
- W2895630341 hasConcept C11413529 @default.
- W2895630341 hasConcept C116834253 @default.
- W2895630341 hasConcept C119043178 @default.
- W2895630341 hasConcept C122770356 @default.
- W2895630341 hasConcept C154945302 @default.
- W2895630341 hasConcept C33923547 @default.
- W2895630341 hasConcept C41008148 @default.
- W2895630341 hasConcept C51167844 @default.
- W2895630341 hasConcept C59822182 @default.
- W2895630341 hasConcept C70437156 @default.
- W2895630341 hasConcept C71104824 @default.
- W2895630341 hasConcept C74197172 @default.
- W2895630341 hasConcept C86803240 @default.
- W2895630341 hasConceptScore W2895630341C105795698 @default.
- W2895630341 hasConceptScore W2895630341C11413529 @default.
- W2895630341 hasConceptScore W2895630341C116834253 @default.
- W2895630341 hasConceptScore W2895630341C119043178 @default.
- W2895630341 hasConceptScore W2895630341C122770356 @default.
- W2895630341 hasConceptScore W2895630341C154945302 @default.
- W2895630341 hasConceptScore W2895630341C33923547 @default.
- W2895630341 hasConceptScore W2895630341C41008148 @default.
- W2895630341 hasConceptScore W2895630341C51167844 @default.
- W2895630341 hasConceptScore W2895630341C59822182 @default.
- W2895630341 hasConceptScore W2895630341C70437156 @default.
- W2895630341 hasConceptScore W2895630341C71104824 @default.
- W2895630341 hasConceptScore W2895630341C74197172 @default.
- W2895630341 hasConceptScore W2895630341C86803240 @default.
- W2895630341 hasFunder F4320307874 @default.
- W2895630341 hasFunder F4320337354 @default.
- W2895630341 hasFunder F4320337359 @default.
- W2895630341 hasLocation W28956303411 @default.
- W2895630341 hasLocation W28956303412 @default.
- W2895630341 hasLocation W28956303413 @default.
- W2895630341 hasLocation W28956303414 @default.
- W2895630341 hasLocation W28956303415 @default.
- W2895630341 hasLocation W28956303416 @default.
- W2895630341 hasLocation W28956303417 @default.
- W2895630341 hasOpenAccess W2895630341 @default.