Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895671046> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2895671046 abstract "Monitoring of the marine environment requires large amounts of data, simply due to its vast size. Therefore, underwater autonomous vehicles and drones are increasingly deployed to acquire numerous photographs. However, ecological conclusions from them are lagging as the data requires expert annotation and thus realistically cannot be manually processed. This calls for developing automatic classification algorithms dedicated for this type of data. Current out-of-the-box solutions struggle to provide optimal results in these scenarios as the marine data is very different from everyday data. Images taken under water display low contrast levels and reduced visibility range thus making objects harder to localize and classify. Scale varies dramatically because of the complex 3 dimensionality of the scenes. In addition, the scarcity of labeled marine data prevents training these dedicated networks from scratch. In this work, we demonstrate how transfer learning can be utilized to achieve high quality results for both detection and classification in the marine environment. We also demonstrate tracking in videos that enables counting and measuring the organisms. We demonstrate the suggested method on two very different marine datasets, an aerial dataset and an underwater one." @default.
- W2895671046 created "2018-10-12" @default.
- W2895671046 creator A5023625911 @default.
- W2895671046 creator A5031531092 @default.
- W2895671046 creator A5041513965 @default.
- W2895671046 creator A5054018011 @default.
- W2895671046 creator A5064840353 @default.
- W2895671046 creator A5078713723 @default.
- W2895671046 creator A5079316450 @default.
- W2895671046 creator A5085205944 @default.
- W2895671046 date "2018-06-01" @default.
- W2895671046 modified "2023-09-24" @default.
- W2895671046 title "Automated Analysis of Marine Video with Limited Data" @default.
- W2895671046 cites W1536680647 @default.
- W2895671046 cites W1769599646 @default.
- W2895671046 cites W1903029394 @default.
- W2895671046 cites W1965718792 @default.
- W2895671046 cites W2010408121 @default.
- W2895671046 cites W2051785999 @default.
- W2895671046 cites W2088888393 @default.
- W2895671046 cites W2102605133 @default.
- W2895671046 cites W2105934661 @default.
- W2895671046 cites W2108598243 @default.
- W2895671046 cites W2112942233 @default.
- W2895671046 cites W2124211486 @default.
- W2895671046 cites W2127923214 @default.
- W2895671046 cites W2131173239 @default.
- W2895671046 cites W2138689455 @default.
- W2895671046 cites W2157612397 @default.
- W2895671046 cites W2163186270 @default.
- W2895671046 cites W2165698076 @default.
- W2895671046 cites W2194775991 @default.
- W2895671046 cites W2205204134 @default.
- W2895671046 cites W2237765446 @default.
- W2895671046 cites W2252355370 @default.
- W2895671046 cites W2253409621 @default.
- W2895671046 cites W2345420577 @default.
- W2895671046 cites W2533944660 @default.
- W2895671046 cites W2557392958 @default.
- W2895671046 cites W2565639579 @default.
- W2895671046 cites W2565879877 @default.
- W2895671046 cites W2570343428 @default.
- W2895671046 cites W2763503841 @default.
- W2895671046 cites W2766648222 @default.
- W2895671046 cites W2778195589 @default.
- W2895671046 cites W2963037989 @default.
- W2895671046 cites W2963351448 @default.
- W2895671046 cites W4248936881 @default.
- W2895671046 doi "https://doi.org/10.1109/cvprw.2018.00187" @default.
- W2895671046 hasPublicationYear "2018" @default.
- W2895671046 type Work @default.
- W2895671046 sameAs 2895671046 @default.
- W2895671046 citedByCount "18" @default.
- W2895671046 countsByYear W28956710462019 @default.
- W2895671046 countsByYear W28956710462020 @default.
- W2895671046 countsByYear W28956710462022 @default.
- W2895671046 countsByYear W28956710462023 @default.
- W2895671046 crossrefType "proceedings-article" @default.
- W2895671046 hasAuthorship W2895671046A5023625911 @default.
- W2895671046 hasAuthorship W2895671046A5031531092 @default.
- W2895671046 hasAuthorship W2895671046A5041513965 @default.
- W2895671046 hasAuthorship W2895671046A5054018011 @default.
- W2895671046 hasAuthorship W2895671046A5064840353 @default.
- W2895671046 hasAuthorship W2895671046A5078713723 @default.
- W2895671046 hasAuthorship W2895671046A5079316450 @default.
- W2895671046 hasAuthorship W2895671046A5085205944 @default.
- W2895671046 hasConcept C41008148 @default.
- W2895671046 hasConceptScore W2895671046C41008148 @default.
- W2895671046 hasLocation W28956710461 @default.
- W2895671046 hasOpenAccess W2895671046 @default.
- W2895671046 hasPrimaryLocation W28956710461 @default.
- W2895671046 hasRelatedWork W2049775471 @default.
- W2895671046 hasRelatedWork W2093578348 @default.
- W2895671046 hasRelatedWork W2350741829 @default.
- W2895671046 hasRelatedWork W2358668433 @default.
- W2895671046 hasRelatedWork W2376932109 @default.
- W2895671046 hasRelatedWork W2382290278 @default.
- W2895671046 hasRelatedWork W2390279801 @default.
- W2895671046 hasRelatedWork W2748952813 @default.
- W2895671046 hasRelatedWork W2899084033 @default.
- W2895671046 hasRelatedWork W3004735627 @default.
- W2895671046 isParatext "false" @default.
- W2895671046 isRetracted "false" @default.
- W2895671046 magId "2895671046" @default.
- W2895671046 workType "article" @default.