Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895692022> ?p ?o ?g. }
- W2895692022 endingPage "711" @default.
- W2895692022 startingPage "694" @default.
- W2895692022 abstract "We introduce a family of novel approaches to single-image blind deconvolution, i.e., the problem of recovering a sharp image and a blur kernel from a single blurry input. This problem is highly ill-posed, because infinite (image, blur) pairs produce the same blurry image. Most research effort has been devoted to the design of priors for natural images and blur kernels, which can drastically prune the set of possible solutions. Unfortunately, these priors are usually not sufficient to favor the sharp solution. In this paper we address this issue by looking at a much less studied aspect: the relative scale ambiguity between the sharp image and the blur. Most prior work eliminates this ambiguity by fixing the $$L^1$$ norm of the blur kernel. In principle, however, this choice is arbitrary. We show that a careful design of the blur normalization yields a blind deconvolution formulation with remarkable accuracy and robustness to noise. Specifically, we show that using the Frobenius norm to fix the scale ambiguity enables convex image priors, such as the total variation, to achieve state-of-the-art results on both synthetic and real datasets." @default.
- W2895692022 created "2018-10-12" @default.
- W2895692022 creator A5046381970 @default.
- W2895692022 creator A5056098625 @default.
- W2895692022 creator A5070940574 @default.
- W2895692022 date "2018-01-01" @default.
- W2895692022 modified "2023-10-18" @default.
- W2895692022 title "Normalized Blind Deconvolution" @default.
- W2895692022 cites W1457323852 @default.
- W2895692022 cites W1598281290 @default.
- W2895692022 cites W1604428010 @default.
- W2895692022 cites W1681747385 @default.
- W2895692022 cites W1795014501 @default.
- W2895692022 cites W1899439299 @default.
- W2895692022 cites W1910977477 @default.
- W2895692022 cites W1916935112 @default.
- W2895692022 cites W1964590153 @default.
- W2895692022 cites W1976730913 @default.
- W2895692022 cites W1987075379 @default.
- W2895692022 cites W1992309968 @default.
- W2895692022 cites W2026214447 @default.
- W2895692022 cites W2036682493 @default.
- W2895692022 cites W2043529138 @default.
- W2895692022 cites W2044005793 @default.
- W2895692022 cites W2047123483 @default.
- W2895692022 cites W2057480797 @default.
- W2895692022 cites W2098535678 @default.
- W2895692022 cites W2103559027 @default.
- W2895692022 cites W2110158442 @default.
- W2895692022 cites W2118456997 @default.
- W2895692022 cites W2132244934 @default.
- W2895692022 cites W2136885855 @default.
- W2895692022 cites W2138204001 @default.
- W2895692022 cites W2141115311 @default.
- W2895692022 cites W2142263374 @default.
- W2895692022 cites W2158162781 @default.
- W2895692022 cites W2167307343 @default.
- W2895692022 cites W2169233465 @default.
- W2895692022 cites W2172275395 @default.
- W2895692022 cites W2300657047 @default.
- W2895692022 cites W2338834876 @default.
- W2895692022 cites W233979554 @default.
- W2895692022 cites W2465552163 @default.
- W2895692022 cites W2468652750 @default.
- W2895692022 cites W2474628748 @default.
- W2895692022 cites W2483424358 @default.
- W2895692022 cites W2513038312 @default.
- W2895692022 cites W2519597608 @default.
- W2895692022 cites W2554853464 @default.
- W2895692022 cites W2560533888 @default.
- W2895692022 cites W2579111433 @default.
- W2895692022 cites W2740543610 @default.
- W2895692022 cites W2745949522 @default.
- W2895692022 cites W2893595367 @default.
- W2895692022 cites W2964317599 @default.
- W2895692022 cites W4241214195 @default.
- W2895692022 doi "https://doi.org/10.1007/978-3-030-01234-2_41" @default.
- W2895692022 hasPublicationYear "2018" @default.
- W2895692022 type Work @default.
- W2895692022 sameAs 2895692022 @default.
- W2895692022 citedByCount "30" @default.
- W2895692022 countsByYear W28956920222019 @default.
- W2895692022 countsByYear W28956920222020 @default.
- W2895692022 countsByYear W28956920222021 @default.
- W2895692022 countsByYear W28956920222022 @default.
- W2895692022 countsByYear W28956920222023 @default.
- W2895692022 crossrefType "book-chapter" @default.
- W2895692022 hasAuthorship W2895692022A5046381970 @default.
- W2895692022 hasAuthorship W2895692022A5056098625 @default.
- W2895692022 hasAuthorship W2895692022A5070940574 @default.
- W2895692022 hasConcept C104317684 @default.
- W2895692022 hasConcept C106430172 @default.
- W2895692022 hasConcept C107673813 @default.
- W2895692022 hasConcept C11413529 @default.
- W2895692022 hasConcept C114614502 @default.
- W2895692022 hasConcept C115961682 @default.
- W2895692022 hasConcept C153180895 @default.
- W2895692022 hasConcept C154945302 @default.
- W2895692022 hasConcept C174576160 @default.
- W2895692022 hasConcept C17744445 @default.
- W2895692022 hasConcept C177769412 @default.
- W2895692022 hasConcept C185592680 @default.
- W2895692022 hasConcept C191795146 @default.
- W2895692022 hasConcept C199360897 @default.
- W2895692022 hasConcept C199539241 @default.
- W2895692022 hasConcept C2777693668 @default.
- W2895692022 hasConcept C2780522230 @default.
- W2895692022 hasConcept C30044814 @default.
- W2895692022 hasConcept C31972630 @default.
- W2895692022 hasConcept C33923547 @default.
- W2895692022 hasConcept C41008148 @default.
- W2895692022 hasConcept C55493867 @default.
- W2895692022 hasConcept C63479239 @default.
- W2895692022 hasConcept C74193536 @default.
- W2895692022 hasConcept C9417928 @default.
- W2895692022 hasConceptScore W2895692022C104317684 @default.
- W2895692022 hasConceptScore W2895692022C106430172 @default.
- W2895692022 hasConceptScore W2895692022C107673813 @default.