Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895717813> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2895717813 endingPage "1019" @default.
- W2895717813 startingPage "1011" @default.
- W2895717813 abstract "In this study, the authors employ machine learning to develop a new solution method for solving a tri-level network protection problem. In the upper-level, the planner aims to minimise the impact of the interdictor's attempt to disrupt a road network through protection activities. At the middle-level, however, the interdictor seeks to maximise the network's cost function, that is total travel time while the user equilibrium assignment models the road users behaviour at the lower-level. The proposed solution algorithm combines implicit enumeration with machine learning for faster performance. In so doing, four machine learning methods are evaluated among which the artificial neural network model shows the best performance and thereby to be exploited. Principal component analysis is also employed as part of the data pre-processing to perform dimensionality reduction. The proposed solution algorithm exhibits a reasonable level of tractability when employed to solve large problems in which a real-world network is under investigation. Although it cannot guarantee global optimality, it is argued that this is an essential compromise for the application of the network optimisation problems on extensive real-world networks and the large solution space that they generate." @default.
- W2895717813 created "2018-10-12" @default.
- W2895717813 creator A5021264543 @default.
- W2895717813 creator A5044410813 @default.
- W2895717813 creator A5066626180 @default.
- W2895717813 creator A5075301188 @default.
- W2895717813 date "2018-09-06" @default.
- W2895717813 modified "2023-10-04" @default.
- W2895717813 title "Hybrid machine learning and optimisation method to solve a tri‐level road network protection problem" @default.
- W2895717813 cites W1620005141 @default.
- W2895717813 cites W1964647807 @default.
- W2895717813 cites W1996684664 @default.
- W2895717813 cites W1999787908 @default.
- W2895717813 cites W2000900837 @default.
- W2895717813 cites W2001602902 @default.
- W2895717813 cites W2001769813 @default.
- W2895717813 cites W2013750707 @default.
- W2895717813 cites W2015599032 @default.
- W2895717813 cites W2038079205 @default.
- W2895717813 cites W2038535054 @default.
- W2895717813 cites W2045540560 @default.
- W2895717813 cites W2050493208 @default.
- W2895717813 cites W2069856409 @default.
- W2895717813 cites W2074987215 @default.
- W2895717813 cites W2093517413 @default.
- W2895717813 cites W2094879897 @default.
- W2895717813 cites W2117972428 @default.
- W2895717813 cites W2133821486 @default.
- W2895717813 cites W2150470619 @default.
- W2895717813 cites W2151656042 @default.
- W2895717813 cites W2157937859 @default.
- W2895717813 cites W2170534421 @default.
- W2895717813 cites W2618199793 @default.
- W2895717813 cites W2769284531 @default.
- W2895717813 cites W2903950532 @default.
- W2895717813 cites W2919115771 @default.
- W2895717813 cites W2963916349 @default.
- W2895717813 cites W4239510810 @default.
- W2895717813 cites W4245160364 @default.
- W2895717813 cites W4292333943 @default.
- W2895717813 cites W4303111783 @default.
- W2895717813 cites W597715265 @default.
- W2895717813 doi "https://doi.org/10.1049/iet-its.2018.5168" @default.
- W2895717813 hasPublicationYear "2018" @default.
- W2895717813 type Work @default.
- W2895717813 sameAs 2895717813 @default.
- W2895717813 citedByCount "0" @default.
- W2895717813 crossrefType "journal-article" @default.
- W2895717813 hasAuthorship W2895717813A5021264543 @default.
- W2895717813 hasAuthorship W2895717813A5044410813 @default.
- W2895717813 hasAuthorship W2895717813A5066626180 @default.
- W2895717813 hasAuthorship W2895717813A5075301188 @default.
- W2895717813 hasConcept C111030470 @default.
- W2895717813 hasConcept C111335779 @default.
- W2895717813 hasConcept C119857082 @default.
- W2895717813 hasConcept C126255220 @default.
- W2895717813 hasConcept C154945302 @default.
- W2895717813 hasConcept C2524010 @default.
- W2895717813 hasConcept C2776999362 @default.
- W2895717813 hasConcept C33923547 @default.
- W2895717813 hasConcept C41008148 @default.
- W2895717813 hasConcept C50644808 @default.
- W2895717813 hasConcept C70518039 @default.
- W2895717813 hasConceptScore W2895717813C111030470 @default.
- W2895717813 hasConceptScore W2895717813C111335779 @default.
- W2895717813 hasConceptScore W2895717813C119857082 @default.
- W2895717813 hasConceptScore W2895717813C126255220 @default.
- W2895717813 hasConceptScore W2895717813C154945302 @default.
- W2895717813 hasConceptScore W2895717813C2524010 @default.
- W2895717813 hasConceptScore W2895717813C2776999362 @default.
- W2895717813 hasConceptScore W2895717813C33923547 @default.
- W2895717813 hasConceptScore W2895717813C41008148 @default.
- W2895717813 hasConceptScore W2895717813C50644808 @default.
- W2895717813 hasConceptScore W2895717813C70518039 @default.
- W2895717813 hasIssue "9" @default.
- W2895717813 hasLocation W28957178131 @default.
- W2895717813 hasOpenAccess W2895717813 @default.
- W2895717813 hasPrimaryLocation W28957178131 @default.
- W2895717813 hasRelatedWork W1513235864 @default.
- W2895717813 hasRelatedWork W1605560759 @default.
- W2895717813 hasRelatedWork W2146824712 @default.
- W2895717813 hasRelatedWork W2339942324 @default.
- W2895717813 hasRelatedWork W2922457425 @default.
- W2895717813 hasRelatedWork W3123566319 @default.
- W2895717813 hasRelatedWork W3137422635 @default.
- W2895717813 hasRelatedWork W3183987844 @default.
- W2895717813 hasRelatedWork W4250304930 @default.
- W2895717813 hasRelatedWork W1629725936 @default.
- W2895717813 hasVolume "12" @default.
- W2895717813 isParatext "false" @default.
- W2895717813 isRetracted "false" @default.
- W2895717813 magId "2895717813" @default.
- W2895717813 workType "article" @default.