Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895719385> ?p ?o ?g. }
- W2895719385 endingPage "61" @default.
- W2895719385 startingPage "52" @default.
- W2895719385 abstract "Coastal risk assessment and structure design heavily rely on the statistical analysis of the extreme wave climate, such as the wave height, storm duration, wave period and surge height. Due to the dependence among these variables, the multivariate dependence structure should be taken into account for statistical simulation of the storm events. Here, three modelling framework are described and compared for probabilistic modelling of extreme storms, i.e. the Gaussian copula, conditional mixture method and entropy copula. This paper demonstrates the functionality of the approaches in simulating the sea storm while maintaining their statistical characteristics. None of the three methods can fit all the bivariate cases best, and the Gaussian copula gives the best overall fitting quality for the four dimensional data in the case study, while the conditional mixture method gives the lowest fitting quality. The entropy copula gives a comparable simulation results and shows its great potential to be universally applicable for modelling the multivariable joint distribution by avoiding the procedure of assigning any copula family before fitting data." @default.
- W2895719385 created "2018-10-12" @default.
- W2895719385 creator A5003360183 @default.
- W2895719385 creator A5034579880 @default.
- W2895719385 creator A5088319346 @default.
- W2895719385 date "2018-12-01" @default.
- W2895719385 modified "2023-10-16" @default.
- W2895719385 title "Statistical modelling of extreme storms using copulas: A comparison study" @default.
- W2895719385 cites W1495309999 @default.
- W2895719385 cites W1562230073 @default.
- W2895719385 cites W1624356652 @default.
- W2895719385 cites W1873880957 @default.
- W2895719385 cites W1921853374 @default.
- W2895719385 cites W1966262860 @default.
- W2895719385 cites W1967142058 @default.
- W2895719385 cites W1995557521 @default.
- W2895719385 cites W1995875735 @default.
- W2895719385 cites W2000210970 @default.
- W2895719385 cites W2015339214 @default.
- W2895719385 cites W2019162516 @default.
- W2895719385 cites W2026100730 @default.
- W2895719385 cites W2030994355 @default.
- W2895719385 cites W2032558547 @default.
- W2895719385 cites W2048679502 @default.
- W2895719385 cites W2058905279 @default.
- W2895719385 cites W2064508012 @default.
- W2895719385 cites W2067879285 @default.
- W2895719385 cites W2069175076 @default.
- W2895719385 cites W2071554058 @default.
- W2895719385 cites W2079253995 @default.
- W2895719385 cites W2079668044 @default.
- W2895719385 cites W2081639757 @default.
- W2895719385 cites W2084117721 @default.
- W2895719385 cites W2087719296 @default.
- W2895719385 cites W2088400961 @default.
- W2895719385 cites W2089248328 @default.
- W2895719385 cites W2090337025 @default.
- W2895719385 cites W2090700163 @default.
- W2895719385 cites W2098280243 @default.
- W2895719385 cites W2099992946 @default.
- W2895719385 cites W2101405122 @default.
- W2895719385 cites W2118084620 @default.
- W2895719385 cites W2146684760 @default.
- W2895719385 cites W2165107352 @default.
- W2895719385 cites W2181828349 @default.
- W2895719385 cites W2221073970 @default.
- W2895719385 cites W2473490200 @default.
- W2895719385 cites W2516254876 @default.
- W2895719385 cites W2528100090 @default.
- W2895719385 cites W2588881025 @default.
- W2895719385 cites W3123878694 @default.
- W2895719385 cites W395787286 @default.
- W2895719385 cites W4246587917 @default.
- W2895719385 cites W4252028749 @default.
- W2895719385 cites W844964586 @default.
- W2895719385 doi "https://doi.org/10.1016/j.coastaleng.2018.09.007" @default.
- W2895719385 hasPublicationYear "2018" @default.
- W2895719385 type Work @default.
- W2895719385 sameAs 2895719385 @default.
- W2895719385 citedByCount "24" @default.
- W2895719385 countsByYear W28957193852019 @default.
- W2895719385 countsByYear W28957193852020 @default.
- W2895719385 countsByYear W28957193852021 @default.
- W2895719385 countsByYear W28957193852022 @default.
- W2895719385 countsByYear W28957193852023 @default.
- W2895719385 crossrefType "journal-article" @default.
- W2895719385 hasAuthorship W2895719385A5003360183 @default.
- W2895719385 hasAuthorship W2895719385A5034579880 @default.
- W2895719385 hasAuthorship W2895719385A5088319346 @default.
- W2895719385 hasConcept C105306849 @default.
- W2895719385 hasConcept C105795698 @default.
- W2895719385 hasConcept C111368507 @default.
- W2895719385 hasConcept C114289077 @default.
- W2895719385 hasConcept C127313418 @default.
- W2895719385 hasConcept C147581598 @default.
- W2895719385 hasConcept C149782125 @default.
- W2895719385 hasConcept C153294291 @default.
- W2895719385 hasConcept C161584116 @default.
- W2895719385 hasConcept C165082838 @default.
- W2895719385 hasConcept C17618745 @default.
- W2895719385 hasConcept C18653775 @default.
- W2895719385 hasConcept C205649164 @default.
- W2895719385 hasConcept C22818535 @default.
- W2895719385 hasConcept C33923547 @default.
- W2895719385 hasConcept C41008148 @default.
- W2895719385 hasConcept C49937458 @default.
- W2895719385 hasConcept C64341305 @default.
- W2895719385 hasConcept C85910571 @default.
- W2895719385 hasConceptScore W2895719385C105306849 @default.
- W2895719385 hasConceptScore W2895719385C105795698 @default.
- W2895719385 hasConceptScore W2895719385C111368507 @default.
- W2895719385 hasConceptScore W2895719385C114289077 @default.
- W2895719385 hasConceptScore W2895719385C127313418 @default.
- W2895719385 hasConceptScore W2895719385C147581598 @default.
- W2895719385 hasConceptScore W2895719385C149782125 @default.
- W2895719385 hasConceptScore W2895719385C153294291 @default.
- W2895719385 hasConceptScore W2895719385C161584116 @default.
- W2895719385 hasConceptScore W2895719385C165082838 @default.