Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895763020> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2895763020 endingPage "424" @default.
- W2895763020 startingPage "414" @default.
- W2895763020 abstract "The problem of intent understanding between highly and fully automated vehicles and vulnerable road users (VRUs) such as pedestrians in urban traffic environment has got some momentum over the past few years. Previous work has been tackling the problem using two common approaches, namely dynamical motion modeling and motion planning. In this paper, a novel radical end-to-end data-driven approach is proposed for long-term intent prediction of VRUs in urban traffic environment based solely on their motion trajectories. In the proposed approach, we utilized the widely adopted architecture of recurrent neural networks with Long-Short Term Memory (LSTM) modules to form a deep stacked LSTM network. Three common approaches used in the literature were compared against our proposed approach over two different real-world datasets involving pedestrians collected from vehicle-based stereo cameras. The results over the testing datasets showed that the proposed approach achieved higher accuracies over most of the scenarios of the testing datasets with a small mean lateral position error of 0.48 m. Moreover, the proposed approach showed also a significant generalization capability over totally unobserved testing scenes during the training phase with only 0.58 m in mean lateral position error." @default.
- W2895763020 created "2018-10-12" @default.
- W2895763020 creator A5015293969 @default.
- W2895763020 creator A5018882728 @default.
- W2895763020 creator A5090193033 @default.
- W2895763020 date "2018-12-01" @default.
- W2895763020 modified "2023-10-13" @default.
- W2895763020 title "Intent Prediction of Pedestrians via Motion Trajectories Using Stacked Recurrent Neural Networks" @default.
- W2895763020 cites W1735317348 @default.
- W2895763020 cites W1980985548 @default.
- W2895763020 cites W2004641798 @default.
- W2895763020 cites W2064675550 @default.
- W2895763020 cites W2090803762 @default.
- W2895763020 cites W2101821104 @default.
- W2895763020 cites W2102605133 @default.
- W2895763020 cites W2123487311 @default.
- W2895763020 cites W2245440101 @default.
- W2895763020 cites W2415953079 @default.
- W2895763020 cites W2424778531 @default.
- W2895763020 cites W2551641937 @default.
- W2895763020 cites W2565986202 @default.
- W2895763020 cites W2617265362 @default.
- W2895763020 cites W2618530766 @default.
- W2895763020 cites W2773696836 @default.
- W2895763020 cites W2793861472 @default.
- W2895763020 cites W2839695880 @default.
- W2895763020 cites W2912185451 @default.
- W2895763020 cites W2919115771 @default.
- W2895763020 cites W639708223 @default.
- W2895763020 doi "https://doi.org/10.1109/tiv.2018.2873901" @default.
- W2895763020 hasPublicationYear "2018" @default.
- W2895763020 type Work @default.
- W2895763020 sameAs 2895763020 @default.
- W2895763020 citedByCount "51" @default.
- W2895763020 countsByYear W28957630202019 @default.
- W2895763020 countsByYear W28957630202020 @default.
- W2895763020 countsByYear W28957630202021 @default.
- W2895763020 countsByYear W28957630202022 @default.
- W2895763020 countsByYear W28957630202023 @default.
- W2895763020 crossrefType "journal-article" @default.
- W2895763020 hasAuthorship W2895763020A5015293969 @default.
- W2895763020 hasAuthorship W2895763020A5018882728 @default.
- W2895763020 hasAuthorship W2895763020A5090193033 @default.
- W2895763020 hasConcept C104114177 @default.
- W2895763020 hasConcept C127413603 @default.
- W2895763020 hasConcept C154945302 @default.
- W2895763020 hasConcept C22212356 @default.
- W2895763020 hasConcept C2777113093 @default.
- W2895763020 hasConcept C41008148 @default.
- W2895763020 hasConcept C50644808 @default.
- W2895763020 hasConceptScore W2895763020C104114177 @default.
- W2895763020 hasConceptScore W2895763020C127413603 @default.
- W2895763020 hasConceptScore W2895763020C154945302 @default.
- W2895763020 hasConceptScore W2895763020C22212356 @default.
- W2895763020 hasConceptScore W2895763020C2777113093 @default.
- W2895763020 hasConceptScore W2895763020C41008148 @default.
- W2895763020 hasConceptScore W2895763020C50644808 @default.
- W2895763020 hasIssue "4" @default.
- W2895763020 hasLocation W28957630201 @default.
- W2895763020 hasOpenAccess W2895763020 @default.
- W2895763020 hasPrimaryLocation W28957630201 @default.
- W2895763020 hasRelatedWork W2135142117 @default.
- W2895763020 hasRelatedWork W2350280062 @default.
- W2895763020 hasRelatedWork W2386387936 @default.
- W2895763020 hasRelatedWork W2565999991 @default.
- W2895763020 hasRelatedWork W2898978080 @default.
- W2895763020 hasRelatedWork W3001020386 @default.
- W2895763020 hasRelatedWork W3120869690 @default.
- W2895763020 hasRelatedWork W4298062610 @default.
- W2895763020 hasRelatedWork W644753246 @default.
- W2895763020 hasRelatedWork W1629725936 @default.
- W2895763020 hasVolume "3" @default.
- W2895763020 isParatext "false" @default.
- W2895763020 isRetracted "false" @default.
- W2895763020 magId "2895763020" @default.
- W2895763020 workType "article" @default.