Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895766482> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2895766482 endingPage "1850041" @default.
- W2895766482 startingPage "1850041" @default.
- W2895766482 abstract "Sleep Stage Classification (SSC) is a standard process in the Polysomnography (PSG) for studying sleep patterns and events. The SSC provides sleep stage information of a patient throughout an entire sleep test. A physician uses results from SSCs to diagnose sleep disorder symptoms. However, the SSC data processing is time-consuming and requires trained sleep technicians to complete the task. Over the years, researchers attempted to find alternative methods, which are known as Automatic Sleep Stage Classification (ASSC), to perform the task faster and more efficiently. Proposed ASSC techniques usually derived from existing statistical methods and machine learning (ML) techniques. The objective of this study is to develop a new hybrid ASSC technique, Multi-Layer Hybrid Machine Learning Model (MLHM), for classifying sleep stages. The MLHM blends two baseline ML techniques, Decision Tree (DT) and Support Vector Machine (SVM). It operates on a newly developed multi-layer architecture. The multi-layer architecture consists of three layers for classifying [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], [Formula: see text] in different epoch lengths. Our experiment design compares MLHM and baseline ML techniques and other research works. The dataset used in this study was derived from the ISRUC-Sleep database comprising of 100 subjects. The classification performances were thoroughly reviewed using the hold-out and the 10-fold cross-validation method in both subject-specific and subject-independent classifications. The MLHM achieved a certain satisfactory classification results. It gained 0.694[Formula: see text][Formula: see text][Formula: see text]0.22 of accuracy ([Formula: see text]) in subject-specific classification and 0.942[Formula: see text][Formula: see text][Formula: see text]0.02 of accuracy ([Formula: see text]) in subject-independent classification. The pros and cons of the MLHM with the multi-layer architecture were thoroughly discussed. The effect of class imbalance was rationally discussed towards the classification results." @default.
- W2895766482 created "2018-10-12" @default.
- W2895766482 creator A5010472516 @default.
- W2895766482 creator A5073560663 @default.
- W2895766482 date "2018-11-29" @default.
- W2895766482 modified "2023-10-02" @default.
- W2895766482 title "A MULTI-LAYER HYBRID MACHINE LEARNING MODEL FOR AUTOMATIC SLEEP STAGE CLASSIFICATION" @default.
- W2895766482 cites W1638975642 @default.
- W2895766482 cites W1866248554 @default.
- W2895766482 cites W1989801867 @default.
- W2895766482 cites W1989949606 @default.
- W2895766482 cites W2017689092 @default.
- W2895766482 cites W2021899965 @default.
- W2895766482 cites W2041935121 @default.
- W2895766482 cites W2046126307 @default.
- W2895766482 cites W2054384069 @default.
- W2895766482 cites W2078104122 @default.
- W2895766482 cites W2081895431 @default.
- W2895766482 cites W2089400706 @default.
- W2895766482 cites W2090135786 @default.
- W2895766482 cites W2100202863 @default.
- W2895766482 cites W2110468775 @default.
- W2895766482 cites W2172894528 @default.
- W2895766482 cites W2264784497 @default.
- W2895766482 cites W2473506112 @default.
- W2895766482 cites W4242905414 @default.
- W2895766482 cites W63807005 @default.
- W2895766482 doi "https://doi.org/10.4015/s1016237218500412" @default.
- W2895766482 hasPublicationYear "2018" @default.
- W2895766482 type Work @default.
- W2895766482 sameAs 2895766482 @default.
- W2895766482 citedByCount "4" @default.
- W2895766482 countsByYear W28957664822022 @default.
- W2895766482 countsByYear W28957664822023 @default.
- W2895766482 crossrefType "journal-article" @default.
- W2895766482 hasAuthorship W2895766482A5010472516 @default.
- W2895766482 hasAuthorship W2895766482A5073560663 @default.
- W2895766482 hasConcept C111919701 @default.
- W2895766482 hasConcept C118552586 @default.
- W2895766482 hasConcept C119857082 @default.
- W2895766482 hasConcept C12267149 @default.
- W2895766482 hasConcept C127413603 @default.
- W2895766482 hasConcept C154945302 @default.
- W2895766482 hasConcept C201995342 @default.
- W2895766482 hasConcept C204321447 @default.
- W2895766482 hasConcept C2775841894 @default.
- W2895766482 hasConcept C2778205975 @default.
- W2895766482 hasConcept C2780451532 @default.
- W2895766482 hasConcept C2910364982 @default.
- W2895766482 hasConcept C41008148 @default.
- W2895766482 hasConcept C522805319 @default.
- W2895766482 hasConcept C71924100 @default.
- W2895766482 hasConceptScore W2895766482C111919701 @default.
- W2895766482 hasConceptScore W2895766482C118552586 @default.
- W2895766482 hasConceptScore W2895766482C119857082 @default.
- W2895766482 hasConceptScore W2895766482C12267149 @default.
- W2895766482 hasConceptScore W2895766482C127413603 @default.
- W2895766482 hasConceptScore W2895766482C154945302 @default.
- W2895766482 hasConceptScore W2895766482C201995342 @default.
- W2895766482 hasConceptScore W2895766482C204321447 @default.
- W2895766482 hasConceptScore W2895766482C2775841894 @default.
- W2895766482 hasConceptScore W2895766482C2778205975 @default.
- W2895766482 hasConceptScore W2895766482C2780451532 @default.
- W2895766482 hasConceptScore W2895766482C2910364982 @default.
- W2895766482 hasConceptScore W2895766482C41008148 @default.
- W2895766482 hasConceptScore W2895766482C522805319 @default.
- W2895766482 hasConceptScore W2895766482C71924100 @default.
- W2895766482 hasIssue "06" @default.
- W2895766482 hasLocation W28957664821 @default.
- W2895766482 hasOpenAccess W2895766482 @default.
- W2895766482 hasPrimaryLocation W28957664821 @default.
- W2895766482 hasRelatedWork W1996541855 @default.
- W2895766482 hasRelatedWork W2023324280 @default.
- W2895766482 hasRelatedWork W2294987193 @default.
- W2895766482 hasRelatedWork W2319810220 @default.
- W2895766482 hasRelatedWork W2841059565 @default.
- W2895766482 hasRelatedWork W2991581874 @default.
- W2895766482 hasRelatedWork W3195168932 @default.
- W2895766482 hasRelatedWork W330094891 @default.
- W2895766482 hasRelatedWork W4378835439 @default.
- W2895766482 hasRelatedWork W4379364154 @default.
- W2895766482 hasVolume "30" @default.
- W2895766482 isParatext "false" @default.
- W2895766482 isRetracted "false" @default.
- W2895766482 magId "2895766482" @default.
- W2895766482 workType "article" @default.