Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895784174> ?p ?o ?g. }
- W2895784174 endingPage "144" @default.
- W2895784174 startingPage "135" @default.
- W2895784174 abstract "Abstract Increases in liana abundance in tropical forests are pervasive threats to the current and future forest carbon stocks. Never before has the need been more evident for new approaches to detect the presence of liana in ecosystems, given their significance as fingerprints of global environmental change. In this study, we explore the use of longwave infrared reflectance (LWIR, 8–11 μm) as a wavelength region for the classification of liana and tree leaves and compare classification results with those obtained using visible-near infrared reflectance data (VIS-NIR, 0.45–0.95 μm). Twenty sun leaves were collected from each of 14 liana species and 21 tree species located at the canopy or forest edge (n = 700) in Santa Rosa National Park, Costa Rica. LWIR and VIS-NIR reflectance measurements were performed on these leaves using a portable calibrated Fourier Transform Infrared Spectroscopy (FTIR) Agilent ExoScan 4100 and a UniSpec spectral analysis system, respectively. The VIS-NIR and LWIR data were first resampled. Then these two spectral libraries were pre-processed for noise reduction and spectral feature enhancement resulting in three datasets for each spectral region as follows: filtered only, filtered followed by extraction of the first derivative, and continuous wavelet transformation (CWT). Data reduction was then applied to these data sets using principal components analysis (PCA). The outputs obtained from the PCA were used to conduct the supervised classification of liana and tree leaves. In total, 21 classifiers were applied to datasets of training and testing to extract the classification accuracy and agreement for liana and tree leaves. The results suggest that the classification of leaves based on LWIR data can reach accuracy values between 66 and 96% and agreement values between 32 and 92%, regardless of the type of classifier. In contrast, the classification based on VIS-NIR data shows accuracy values between 50 and 70% and agreement values between 0.01 and 40%. The highest classification rates of liana and tree leaves were obtained from datasets pre-processed using the CWT or from the extraction of the first derivative and classified using either random forest, k-nearest neighbor, or support vector machine with radial kernel. The results using the LWIR reflectance highlight the potential of this spectral region for the accurate detection of liana extent in tropical ecosystems. Future studies should consider this potential and test the regional monitoring of lianas." @default.
- W2895784174 created "2018-10-26" @default.
- W2895784174 creator A5049190676 @default.
- W2895784174 creator A5083989960 @default.
- W2895784174 date "2018-12-01" @default.
- W2895784174 modified "2023-09-24" @default.
- W2895784174 title "Discrimination of liana and tree leaves from a Neotropical Dry Forest using visible-near infrared and longwave infrared reflectance spectra" @default.
- W2895784174 cites W1482764025 @default.
- W2895784174 cites W1831050183 @default.
- W2895784174 cites W1850734085 @default.
- W2895784174 cites W1964391202 @default.
- W2895784174 cites W1967737756 @default.
- W2895784174 cites W1973273946 @default.
- W2895784174 cites W1995060534 @default.
- W2895784174 cites W1995397999 @default.
- W2895784174 cites W1999856162 @default.
- W2895784174 cites W2001462218 @default.
- W2895784174 cites W2008467627 @default.
- W2895784174 cites W2020962200 @default.
- W2895784174 cites W2035222601 @default.
- W2895784174 cites W2035814865 @default.
- W2895784174 cites W2037295424 @default.
- W2895784174 cites W2039067795 @default.
- W2895784174 cites W2051421390 @default.
- W2895784174 cites W2057944383 @default.
- W2895784174 cites W2059377398 @default.
- W2895784174 cites W2072933292 @default.
- W2895784174 cites W2080492422 @default.
- W2895784174 cites W2089882657 @default.
- W2895784174 cites W2100483895 @default.
- W2895784174 cites W2104896032 @default.
- W2895784174 cites W2108038635 @default.
- W2895784174 cites W2113187089 @default.
- W2895784174 cites W2116655655 @default.
- W2895784174 cites W2121207891 @default.
- W2895784174 cites W2125721005 @default.
- W2895784174 cites W2131822674 @default.
- W2895784174 cites W2133820264 @default.
- W2895784174 cites W2134832022 @default.
- W2895784174 cites W2139086914 @default.
- W2895784174 cites W2146841049 @default.
- W2895784174 cites W2148143831 @default.
- W2895784174 cites W2148550868 @default.
- W2895784174 cites W2151554678 @default.
- W2895784174 cites W2153084905 @default.
- W2895784174 cites W2155510990 @default.
- W2895784174 cites W2157324002 @default.
- W2895784174 cites W2158896408 @default.
- W2895784174 cites W2171310397 @default.
- W2895784174 cites W2177430556 @default.
- W2895784174 cites W2210881593 @default.
- W2895784174 cites W2261059368 @default.
- W2895784174 cites W2264265455 @default.
- W2895784174 cites W2291719545 @default.
- W2895784174 cites W2330782696 @default.
- W2895784174 cites W2400369162 @default.
- W2895784174 cites W2528945885 @default.
- W2895784174 cites W2594327287 @default.
- W2895784174 cites W2606276529 @default.
- W2895784174 cites W2747732886 @default.
- W2895784174 cites W2774589172 @default.
- W2895784174 cites W2792552153 @default.
- W2895784174 cites W36135414 @default.
- W2895784174 doi "https://doi.org/10.1016/j.rse.2018.10.014" @default.
- W2895784174 hasPublicationYear "2018" @default.
- W2895784174 type Work @default.
- W2895784174 sameAs 2895784174 @default.
- W2895784174 citedByCount "26" @default.
- W2895784174 countsByYear W28957841742019 @default.
- W2895784174 countsByYear W28957841742020 @default.
- W2895784174 countsByYear W28957841742021 @default.
- W2895784174 countsByYear W28957841742022 @default.
- W2895784174 countsByYear W28957841742023 @default.
- W2895784174 crossrefType "journal-article" @default.
- W2895784174 hasAuthorship W2895784174A5049190676 @default.
- W2895784174 hasAuthorship W2895784174A5083989960 @default.
- W2895784174 hasConcept C108597893 @default.
- W2895784174 hasConcept C120665830 @default.
- W2895784174 hasConcept C121332964 @default.
- W2895784174 hasConcept C158355884 @default.
- W2895784174 hasConcept C159078339 @default.
- W2895784174 hasConcept C194691359 @default.
- W2895784174 hasConcept C205649164 @default.
- W2895784174 hasConcept C2779155178 @default.
- W2895784174 hasConcept C39432304 @default.
- W2895784174 hasConcept C58237817 @default.
- W2895784174 hasConcept C59822182 @default.
- W2895784174 hasConcept C62649853 @default.
- W2895784174 hasConcept C74902906 @default.
- W2895784174 hasConcept C86803240 @default.
- W2895784174 hasConceptScore W2895784174C108597893 @default.
- W2895784174 hasConceptScore W2895784174C120665830 @default.
- W2895784174 hasConceptScore W2895784174C121332964 @default.
- W2895784174 hasConceptScore W2895784174C158355884 @default.
- W2895784174 hasConceptScore W2895784174C159078339 @default.
- W2895784174 hasConceptScore W2895784174C194691359 @default.
- W2895784174 hasConceptScore W2895784174C205649164 @default.
- W2895784174 hasConceptScore W2895784174C2779155178 @default.