Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895790435> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2895790435 endingPage "82" @default.
- W2895790435 startingPage "72" @default.
- W2895790435 abstract "Abstract Dynamic modelling plays a crucial role in the analysis of Organic Rankine Cycle (ORC) systems for waste heat recovery, which deal with a highly unsteady heat source. The efficiency of small scale ORCs (i.e. below 100 kW power output) is low ( In this paper, Feedforward, Recurrent and Long Short Term Memory networks have been compared in the prediction of the dynamics of a 20 kW ORC system. Feedforward Neural Network is the simplest among the architectures developed for machine learning. Recurrent and Long Short Term Memory networks have been proved accurate in the prediction of the performance of dynamic systems. This study demonstrates that the three architectures are capable of predicting the dynamic behavior of the ORC system with a good degree of accuracy. The Long Short Term Memory architecture resulted as the highest performing, in that it correctly predicts the dynamics of the system, showing an error prediction lower than 5% and 10% respectively for what concern the prediction 10 and 60 seconds ahead." @default.
- W2895790435 created "2018-10-26" @default.
- W2895790435 creator A5002827275 @default.
- W2895790435 creator A5043152045 @default.
- W2895790435 creator A5087462903 @default.
- W2895790435 date "2019-01-01" @default.
- W2895790435 modified "2023-10-18" @default.
- W2895790435 title "Machine Learning for the prediction of the dynamic behavior of a small scale ORC system" @default.
- W2895790435 cites W1965229818 @default.
- W2895790435 cites W1970061126 @default.
- W2895790435 cites W1982746914 @default.
- W2895790435 cites W2009632996 @default.
- W2895790435 cites W2021230647 @default.
- W2895790435 cites W2021446459 @default.
- W2895790435 cites W2061900571 @default.
- W2895790435 cites W2064675550 @default.
- W2895790435 cites W2069940486 @default.
- W2895790435 cites W2088874310 @default.
- W2895790435 cites W2119037765 @default.
- W2895790435 cites W2135536698 @default.
- W2895790435 cites W2138484437 @default.
- W2895790435 cites W2170559844 @default.
- W2895790435 cites W2346587740 @default.
- W2895790435 cites W2754963898 @default.
- W2895790435 cites W2791136550 @default.
- W2895790435 doi "https://doi.org/10.1016/j.energy.2018.10.059" @default.
- W2895790435 hasPublicationYear "2019" @default.
- W2895790435 type Work @default.
- W2895790435 sameAs 2895790435 @default.
- W2895790435 citedByCount "31" @default.
- W2895790435 countsByYear W28957904352019 @default.
- W2895790435 countsByYear W28957904352020 @default.
- W2895790435 countsByYear W28957904352021 @default.
- W2895790435 countsByYear W28957904352022 @default.
- W2895790435 countsByYear W28957904352023 @default.
- W2895790435 crossrefType "journal-article" @default.
- W2895790435 hasAuthorship W2895790435A5002827275 @default.
- W2895790435 hasAuthorship W2895790435A5043152045 @default.
- W2895790435 hasAuthorship W2895790435A5087462903 @default.
- W2895790435 hasBestOaLocation W28957904352 @default.
- W2895790435 hasConcept C119857082 @default.
- W2895790435 hasConcept C154945302 @default.
- W2895790435 hasConcept C205649164 @default.
- W2895790435 hasConcept C2778755073 @default.
- W2895790435 hasConcept C41008148 @default.
- W2895790435 hasConcept C58640448 @default.
- W2895790435 hasConceptScore W2895790435C119857082 @default.
- W2895790435 hasConceptScore W2895790435C154945302 @default.
- W2895790435 hasConceptScore W2895790435C205649164 @default.
- W2895790435 hasConceptScore W2895790435C2778755073 @default.
- W2895790435 hasConceptScore W2895790435C41008148 @default.
- W2895790435 hasConceptScore W2895790435C58640448 @default.
- W2895790435 hasFunder F4320324766 @default.
- W2895790435 hasLocation W28957904351 @default.
- W2895790435 hasLocation W28957904352 @default.
- W2895790435 hasLocation W28957904353 @default.
- W2895790435 hasOpenAccess W2895790435 @default.
- W2895790435 hasPrimaryLocation W28957904351 @default.
- W2895790435 hasRelatedWork W2961085424 @default.
- W2895790435 hasRelatedWork W3046775127 @default.
- W2895790435 hasRelatedWork W3107602296 @default.
- W2895790435 hasRelatedWork W3170094116 @default.
- W2895790435 hasRelatedWork W3209574120 @default.
- W2895790435 hasRelatedWork W4210805261 @default.
- W2895790435 hasRelatedWork W4306674287 @default.
- W2895790435 hasRelatedWork W4312192474 @default.
- W2895790435 hasRelatedWork W4386462264 @default.
- W2895790435 hasRelatedWork W4387297750 @default.
- W2895790435 hasVolume "166" @default.
- W2895790435 isParatext "false" @default.
- W2895790435 isRetracted "false" @default.
- W2895790435 magId "2895790435" @default.
- W2895790435 workType "article" @default.