Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895805693> ?p ?o ?g. }
- W2895805693 endingPage "362" @default.
- W2895805693 startingPage "345" @default.
- W2895805693 abstract "Particle filters are well known in statistics. They have a long tradition in the framework of ensemble data assimilation (EDA) as well as Markov chain Monte Carlo (MCMC) methods. A key challenge today is to employ such methods in a high-dimensional environment, since the naïve application of the classical particle filter usually leads to filter divergence or filter collapse when applied within the very high dimension of many practical assimilation problems (known as the curse of dimensionality). The goal of this work is to develop a localized adaptive particle filter (LAPF), which follows closely the idea of the classical MCMC or bootstrap-type particle filter, but overcomes the problems of collapse and divergence based on localization in the spirit of the local ensemble transform Kalman filter (LETKF) and adaptivity with an adaptive Gaussian resampling or rejuvenation scheme in ensemble space. The particle filter has been implemented in the data assimilation system for the global forecast model ICON at Deutscher Wetterdienst (DWD). We carry out simulations over a period of 1 month with a global horizontal resolution of 52 km and 90 layers. With four variables analyzed per grid point, this leads to 6.6 × 10 6 degrees of freedom. The LAPF can be run stably and shows a reasonable performance. We compare its scores to the operational setup of the ICON LETKF." @default.
- W2895805693 created "2018-10-26" @default.
- W2895805693 creator A5030682100 @default.
- W2895805693 creator A5054124716 @default.
- W2895805693 creator A5089663828 @default.
- W2895805693 date "2019-01-01" @default.
- W2895805693 modified "2023-10-09" @default.
- W2895805693 title "A Localized Adaptive Particle Filter within an Operational NWP Framework" @default.
- W2895805693 cites W1029488735 @default.
- W2895805693 cites W1483307070 @default.
- W2895805693 cites W1573874356 @default.
- W2895805693 cites W1596195796 @default.
- W2895805693 cites W1648093232 @default.
- W2895805693 cites W1670531616 @default.
- W2895805693 cites W1789155650 @default.
- W2895805693 cites W1816972969 @default.
- W2895805693 cites W1828859704 @default.
- W2895805693 cites W1934232387 @default.
- W2895805693 cites W1971352345 @default.
- W2895805693 cites W1987308763 @default.
- W2895805693 cites W1995262681 @default.
- W2895805693 cites W2001250891 @default.
- W2895805693 cites W2005855731 @default.
- W2895805693 cites W2026177294 @default.
- W2895805693 cites W2030774493 @default.
- W2895805693 cites W2033530468 @default.
- W2895805693 cites W2035050240 @default.
- W2895805693 cites W2045381799 @default.
- W2895805693 cites W2046844708 @default.
- W2895805693 cites W2056511545 @default.
- W2895805693 cites W2058187269 @default.
- W2895805693 cites W2076546887 @default.
- W2895805693 cites W2077110894 @default.
- W2895805693 cites W2079075738 @default.
- W2895805693 cites W2079854164 @default.
- W2895805693 cites W2098115494 @default.
- W2895805693 cites W2098552783 @default.
- W2895805693 cites W2101981609 @default.
- W2895805693 cites W2102270443 @default.
- W2895805693 cites W2103301566 @default.
- W2895805693 cites W2105617589 @default.
- W2895805693 cites W2114373812 @default.
- W2895805693 cites W2115876459 @default.
- W2895805693 cites W2123940107 @default.
- W2895805693 cites W2124346463 @default.
- W2895805693 cites W2126202478 @default.
- W2895805693 cites W2128931495 @default.
- W2895805693 cites W2129701296 @default.
- W2895805693 cites W2129835183 @default.
- W2895805693 cites W2132600099 @default.
- W2895805693 cites W2134255235 @default.
- W2895805693 cites W2134281251 @default.
- W2895805693 cites W2147119488 @default.
- W2895805693 cites W2150951085 @default.
- W2895805693 cites W2157098139 @default.
- W2895805693 cites W2160444846 @default.
- W2895805693 cites W2166317254 @default.
- W2895805693 cites W2172819965 @default.
- W2895805693 cites W2173190456 @default.
- W2895805693 cites W2175066699 @default.
- W2895805693 cites W2176150232 @default.
- W2895805693 cites W2179584279 @default.
- W2895805693 cites W2179860363 @default.
- W2895805693 cites W2237058496 @default.
- W2895805693 cites W2274696538 @default.
- W2895805693 cites W2292650202 @default.
- W2895805693 cites W2324598374 @default.
- W2895805693 cites W2404417437 @default.
- W2895805693 cites W2477685028 @default.
- W2895805693 cites W2596133991 @default.
- W2895805693 cites W2606969299 @default.
- W2895805693 cites W2951980816 @default.
- W2895805693 cites W3101606601 @default.
- W2895805693 cites W4231204432 @default.
- W2895805693 cites W4242642094 @default.
- W2895805693 doi "https://doi.org/10.1175/mwr-d-18-0028.1" @default.
- W2895805693 hasPublicationYear "2019" @default.
- W2895805693 type Work @default.
- W2895805693 sameAs 2895805693 @default.
- W2895805693 citedByCount "45" @default.
- W2895805693 countsByYear W28958056932018 @default.
- W2895805693 countsByYear W28958056932019 @default.
- W2895805693 countsByYear W28958056932020 @default.
- W2895805693 countsByYear W28958056932021 @default.
- W2895805693 countsByYear W28958056932022 @default.
- W2895805693 countsByYear W28958056932023 @default.
- W2895805693 crossrefType "journal-article" @default.
- W2895805693 hasAuthorship W2895805693A5030682100 @default.
- W2895805693 hasAuthorship W2895805693A5054124716 @default.
- W2895805693 hasAuthorship W2895805693A5089663828 @default.
- W2895805693 hasBestOaLocation W28958056931 @default.
- W2895805693 hasConcept C107673813 @default.
- W2895805693 hasConcept C111030470 @default.
- W2895805693 hasConcept C111350023 @default.
- W2895805693 hasConcept C11413529 @default.
- W2895805693 hasConcept C121332964 @default.
- W2895805693 hasConcept C126255220 @default.
- W2895805693 hasConcept C150921843 @default.