Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895806851> ?p ?o ?g. }
- W2895806851 endingPage "723" @default.
- W2895806851 startingPage "718" @default.
- W2895806851 abstract "Abstract Using Maximum Likelihood (or Prediction Error) methods to identify linear state space model is a prime technique. The likelihood function is a nonconvex function and care must be exercised in the numerical maximization. Here the focus will be on affine parameterizations which allow some special techniques and algorithms. Three approaches to formulate and perform the maximization are described in this contribution: (1) The standard and well known Gauss-Newton iterative search, (2) a scheme based on the EM (expectation-maximization) technique, which becomes especially simple in the affine parameterization case, and (3) a new approach based on lifting the problem to a higher dimension in the parameter space and introducing rank constraints." @default.
- W2895806851 created "2018-10-26" @default.
- W2895806851 creator A5003504954 @default.
- W2895806851 creator A5018395060 @default.
- W2895806851 creator A5050571002 @default.
- W2895806851 creator A5078405221 @default.
- W2895806851 date "2018-01-01" @default.
- W2895806851 modified "2023-09-28" @default.
- W2895806851 title "Affinely Parametrized State-space Models: Ways to Maximize the Likelihood Function" @default.
- W2895806851 cites W1963718895 @default.
- W2895806851 cites W1965324089 @default.
- W2895806851 cites W1970193303 @default.
- W2895806851 cites W1982182688 @default.
- W2895806851 cites W2003967703 @default.
- W2895806851 cites W2009061689 @default.
- W2895806851 cites W2011691068 @default.
- W2895806851 cites W2049633694 @default.
- W2895806851 cites W2069371232 @default.
- W2895806851 cites W2077677219 @default.
- W2895806851 cites W2115691605 @default.
- W2895806851 cites W2118760499 @default.
- W2895806851 cites W2125945227 @default.
- W2895806851 cites W2130212796 @default.
- W2895806851 cites W2130242703 @default.
- W2895806851 doi "https://doi.org/10.1016/j.ifacol.2018.09.170" @default.
- W2895806851 hasPublicationYear "2018" @default.
- W2895806851 type Work @default.
- W2895806851 sameAs 2895806851 @default.
- W2895806851 citedByCount "1" @default.
- W2895806851 countsByYear W28958068512019 @default.
- W2895806851 crossrefType "journal-article" @default.
- W2895806851 hasAuthorship W2895806851A5003504954 @default.
- W2895806851 hasAuthorship W2895806851A5018395060 @default.
- W2895806851 hasAuthorship W2895806851A5050571002 @default.
- W2895806851 hasAuthorship W2895806851A5078405221 @default.
- W2895806851 hasBestOaLocation W28958068511 @default.
- W2895806851 hasConcept C105795698 @default.
- W2895806851 hasConcept C111472728 @default.
- W2895806851 hasConcept C111919701 @default.
- W2895806851 hasConcept C11413529 @default.
- W2895806851 hasConcept C114614502 @default.
- W2895806851 hasConcept C120665830 @default.
- W2895806851 hasConcept C121332964 @default.
- W2895806851 hasConcept C126255220 @default.
- W2895806851 hasConcept C138885662 @default.
- W2895806851 hasConcept C14036430 @default.
- W2895806851 hasConcept C164226766 @default.
- W2895806851 hasConcept C167928553 @default.
- W2895806851 hasConcept C182081679 @default.
- W2895806851 hasConcept C184992742 @default.
- W2895806851 hasConcept C192209626 @default.
- W2895806851 hasConcept C202444582 @default.
- W2895806851 hasConcept C2776330181 @default.
- W2895806851 hasConcept C2778572836 @default.
- W2895806851 hasConcept C2780586882 @default.
- W2895806851 hasConcept C28826006 @default.
- W2895806851 hasConcept C33676613 @default.
- W2895806851 hasConcept C33923547 @default.
- W2895806851 hasConcept C41008148 @default.
- W2895806851 hasConcept C48103436 @default.
- W2895806851 hasConcept C49781872 @default.
- W2895806851 hasConcept C72434380 @default.
- W2895806851 hasConcept C78458016 @default.
- W2895806851 hasConcept C86803240 @default.
- W2895806851 hasConcept C89106044 @default.
- W2895806851 hasConcept C92757383 @default.
- W2895806851 hasConceptScore W2895806851C105795698 @default.
- W2895806851 hasConceptScore W2895806851C111472728 @default.
- W2895806851 hasConceptScore W2895806851C111919701 @default.
- W2895806851 hasConceptScore W2895806851C11413529 @default.
- W2895806851 hasConceptScore W2895806851C114614502 @default.
- W2895806851 hasConceptScore W2895806851C120665830 @default.
- W2895806851 hasConceptScore W2895806851C121332964 @default.
- W2895806851 hasConceptScore W2895806851C126255220 @default.
- W2895806851 hasConceptScore W2895806851C138885662 @default.
- W2895806851 hasConceptScore W2895806851C14036430 @default.
- W2895806851 hasConceptScore W2895806851C164226766 @default.
- W2895806851 hasConceptScore W2895806851C167928553 @default.
- W2895806851 hasConceptScore W2895806851C182081679 @default.
- W2895806851 hasConceptScore W2895806851C184992742 @default.
- W2895806851 hasConceptScore W2895806851C192209626 @default.
- W2895806851 hasConceptScore W2895806851C202444582 @default.
- W2895806851 hasConceptScore W2895806851C2776330181 @default.
- W2895806851 hasConceptScore W2895806851C2778572836 @default.
- W2895806851 hasConceptScore W2895806851C2780586882 @default.
- W2895806851 hasConceptScore W2895806851C28826006 @default.
- W2895806851 hasConceptScore W2895806851C33676613 @default.
- W2895806851 hasConceptScore W2895806851C33923547 @default.
- W2895806851 hasConceptScore W2895806851C41008148 @default.
- W2895806851 hasConceptScore W2895806851C48103436 @default.
- W2895806851 hasConceptScore W2895806851C49781872 @default.
- W2895806851 hasConceptScore W2895806851C72434380 @default.
- W2895806851 hasConceptScore W2895806851C78458016 @default.
- W2895806851 hasConceptScore W2895806851C86803240 @default.
- W2895806851 hasConceptScore W2895806851C89106044 @default.
- W2895806851 hasConceptScore W2895806851C92757383 @default.
- W2895806851 hasIssue "15" @default.
- W2895806851 hasLocation W28958068511 @default.