Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895810213> ?p ?o ?g. }
- W2895810213 endingPage "78" @default.
- W2895810213 startingPage "64" @default.
- W2895810213 abstract "DNA-binding proteins (DBPs) are responsible for several cellular functions, starting from our immunity system to the transport of oxygen. In the recent studies, scientists have used supervised machine learning based methods that use information from the protein sequence only to classify the DBPs. Most of the methods work effectively on the train sets but performance of most of them degrades in the independent test set. It shows a room for improving the prediction method by reducing over-fitting. In this paper, we have extracted several features solely using the protein sequence and carried out two different types of feature selection on them. Our results have proven comparable on training set and significantly improved on the independent test set. On the independent test set our accuracy was 82.26% which is 1.62% improved compared to the previous best state-of-the-art methods. Performance in terms of sensitivity and area under receiver operating characteristic curve for the independent test set was also higher and they were 0.95 and 0.823 respectively." @default.
- W2895810213 created "2018-10-26" @default.
- W2895810213 creator A5030913401 @default.
- W2895810213 creator A5033587411 @default.
- W2895810213 creator A5067504579 @default.
- W2895810213 date "2019-01-01" @default.
- W2895810213 modified "2023-09-25" @default.
- W2895810213 title "Effective DNA binding protein prediction by using key features via Chou’s general PseAAC" @default.
- W2895810213 cites W1186776093 @default.
- W2895810213 cites W1494484168 @default.
- W2895810213 cites W1807324513 @default.
- W2895810213 cites W1943237984 @default.
- W2895810213 cites W1963496351 @default.
- W2895810213 cites W1981091069 @default.
- W2895810213 cites W1991141438 @default.
- W2895810213 cites W1992116297 @default.
- W2895810213 cites W2001168095 @default.
- W2895810213 cites W2004132756 @default.
- W2895810213 cites W2009470087 @default.
- W2895810213 cites W2010688088 @default.
- W2895810213 cites W2013887116 @default.
- W2895810213 cites W2016579482 @default.
- W2895810213 cites W2018623710 @default.
- W2895810213 cites W2030922238 @default.
- W2895810213 cites W2034070267 @default.
- W2895810213 cites W2038873127 @default.
- W2895810213 cites W2056132907 @default.
- W2895810213 cites W2070980386 @default.
- W2895810213 cites W2090561245 @default.
- W2895810213 cites W2096223584 @default.
- W2895810213 cites W2102945860 @default.
- W2895810213 cites W2114024619 @default.
- W2895810213 cites W2121090558 @default.
- W2895810213 cites W2125283600 @default.
- W2895810213 cites W2132292391 @default.
- W2895810213 cites W2133036743 @default.
- W2895810213 cites W2137324860 @default.
- W2895810213 cites W2137565410 @default.
- W2895810213 cites W2145957695 @default.
- W2895810213 cites W2158698691 @default.
- W2895810213 cites W2161621183 @default.
- W2895810213 cites W2171901005 @default.
- W2895810213 cites W2173801226 @default.
- W2895810213 cites W2209329607 @default.
- W2895810213 cites W2278741011 @default.
- W2895810213 cites W2340970647 @default.
- W2895810213 cites W2345938495 @default.
- W2895810213 cites W2420474086 @default.
- W2895810213 cites W2439245561 @default.
- W2895810213 cites W2470414691 @default.
- W2895810213 cites W2472513547 @default.
- W2895810213 cites W2530181556 @default.
- W2895810213 cites W2558057290 @default.
- W2895810213 cites W2571299862 @default.
- W2895810213 cites W2609394459 @default.
- W2895810213 cites W2735158968 @default.
- W2895810213 cites W2735428840 @default.
- W2895810213 cites W2736742854 @default.
- W2895810213 cites W2749697459 @default.
- W2895810213 cites W2762890495 @default.
- W2895810213 cites W2766430481 @default.
- W2895810213 cites W2768705872 @default.
- W2895810213 cites W2769306988 @default.
- W2895810213 cites W2794797435 @default.
- W2895810213 cites W2800074215 @default.
- W2895810213 cites W2801931817 @default.
- W2895810213 cites W2803366711 @default.
- W2895810213 cites W2804549231 @default.
- W2895810213 cites W2875515511 @default.
- W2895810213 cites W2887518800 @default.
- W2895810213 doi "https://doi.org/10.1016/j.jtbi.2018.10.027" @default.
- W2895810213 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30316822" @default.
- W2895810213 hasPublicationYear "2019" @default.
- W2895810213 type Work @default.
- W2895810213 sameAs 2895810213 @default.
- W2895810213 citedByCount "42" @default.
- W2895810213 countsByYear W28958102132019 @default.
- W2895810213 countsByYear W28958102132020 @default.
- W2895810213 countsByYear W28958102132021 @default.
- W2895810213 countsByYear W28958102132022 @default.
- W2895810213 crossrefType "journal-article" @default.
- W2895810213 hasAuthorship W2895810213A5030913401 @default.
- W2895810213 hasAuthorship W2895810213A5033587411 @default.
- W2895810213 hasAuthorship W2895810213A5067504579 @default.
- W2895810213 hasConcept C10010492 @default.
- W2895810213 hasConcept C104317684 @default.
- W2895810213 hasConcept C119857082 @default.
- W2895810213 hasConcept C124101348 @default.
- W2895810213 hasConcept C138885662 @default.
- W2895810213 hasConcept C148483581 @default.
- W2895810213 hasConcept C153180895 @default.
- W2895810213 hasConcept C154945302 @default.
- W2895810213 hasConcept C167625842 @default.
- W2895810213 hasConcept C169903167 @default.
- W2895810213 hasConcept C177264268 @default.
- W2895810213 hasConcept C199360897 @default.
- W2895810213 hasConcept C2776401178 @default.
- W2895810213 hasConcept C2778112365 @default.