Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895813073> ?p ?o ?g. }
- W2895813073 abstract "Abstract One major goal in reservoir engineering is to improve ultimate recovery factor. In reservoir models with complex geological settings, e.g., river channel reservoir models, the quality of estimation of the patterns of channel connectivity is critical in designing a reservoir development plan to improve ultimate recovery factor. However, geostatistical techniques based on two-point statistics, such as variogram model based methods, are not suitable to reproduce those complex geological connectivity patterns. Moreover, traditional history matching methods have difficulties in estimating and preserving channel connectivity patterns. Recently, multiple point statistics (MPS) methods have been developed to model the complex geological connectivity and generate discrete facies models (e.g., channel facies). In MPS, facies models, e.g., channel models, are sampled based on empirical facies probabilities that are estimated from a geological conceptual model, known as a training image (TI). A training image can be regarded as a databased of spatial structures that contain higher order (higher than 2nd order) multivariate geostatistical information. As a result, MPS can generate facies models that are geologically consistent with the geological features contained in the training image. An advantage of MPS facies simulation is that it is convenient to condition facies models on hard data (e.g., well measurements) and soft data (e.g., seismic data). By taking this advantage, I have developed two MPS based history matching methods, which are able to reproduce geological consistent channel connectivity patterns while matching dynamic flow data. The adapted pilot point method strategically places pilot points in a reservoir model based on both sensitivity and uncertainty information of the model. Then facies type values at the pilot points are estimated and considered as hard data to condition facies simulations. This method enables conditioning MPS facies simulations on flow data, however, it only uses limited information from the reservoir via pilot points that have limited spatial coverage. The second method is a facies probability conditioning method, which infers a facies probability map (the same size as the reservoir model) from flow data and then considers the probability map as soft data to condition the facies simulations. Although this method has a much better coverage of the reservoir model, it suffers from generate facies models that are not consistent with the facies probability map. In this paper, I will show the results from the investigation on this inconsistency issue and explain the reason responsible for the issue: the intrinsic behavior of MPS facies simulation algorithm tends to disregard the facies probability map at the later stage of the simulation. More specifically, the facies patterns in the output of MPS facies simulation are primarily controlled by the first few grid cells along the corresponding random path and the facies simulations at the rest of the grid cells are dominated by the conditional probability estimated from the TI, while the facies probability map has a minimal impact on the outcome. Then, I proposed a new approach for conditioning MPS facies simulations on flow data by ensuring gaining more control on the simulations a t the early grid cells on the random path of a MPS simulation. I will also present numerical experiments to show that this approach leads to generation of more geologically consistent facies connectivity patterns." @default.
- W2895813073 created "2018-10-26" @default.
- W2895813073 creator A5044295548 @default.
- W2895813073 date "2018-09-24" @default.
- W2895813073 modified "2023-10-18" @default.
- W2895813073 title "Geologically Consistent History Matching for Complex Reservoir Models" @default.
- W2895813073 cites W118094499 @default.
- W2895813073 cites W152646232 @default.
- W2895813073 cites W1537810918 @default.
- W2895813073 cites W155812880 @default.
- W2895813073 cites W1570210063 @default.
- W2895813073 cites W1582091313 @default.
- W2895813073 cites W1590954147 @default.
- W2895813073 cites W1622545880 @default.
- W2895813073 cites W1853370451 @default.
- W2895813073 cites W1861725096 @default.
- W2895813073 cites W1938146683 @default.
- W2895813073 cites W1967966473 @default.
- W2895813073 cites W1973397550 @default.
- W2895813073 cites W1982129391 @default.
- W2895813073 cites W1982751166 @default.
- W2895813073 cites W1989411673 @default.
- W2895813073 cites W1992548144 @default.
- W2895813073 cites W2008179957 @default.
- W2895813073 cites W2012052869 @default.
- W2895813073 cites W2015565756 @default.
- W2895813073 cites W2019264700 @default.
- W2895813073 cites W2020546414 @default.
- W2895813073 cites W2027792629 @default.
- W2895813073 cites W2029141665 @default.
- W2895813073 cites W2033108198 @default.
- W2895813073 cites W2035334832 @default.
- W2895813073 cites W2037128309 @default.
- W2895813073 cites W2041643394 @default.
- W2895813073 cites W2046684028 @default.
- W2895813073 cites W20475988 @default.
- W2895813073 cites W2053107082 @default.
- W2895813073 cites W2058070495 @default.
- W2895813073 cites W2066021483 @default.
- W2895813073 cites W2067138579 @default.
- W2895813073 cites W2068868406 @default.
- W2895813073 cites W2069817906 @default.
- W2895813073 cites W2075868857 @default.
- W2895813073 cites W2078327207 @default.
- W2895813073 cites W2079927384 @default.
- W2895813073 cites W2082212239 @default.
- W2895813073 cites W2094565829 @default.
- W2895813073 cites W2095454627 @default.
- W2895813073 cites W2098591732 @default.
- W2895813073 cites W2110766101 @default.
- W2895813073 cites W2118166339 @default.
- W2895813073 cites W2165645409 @default.
- W2895813073 cites W2499009324 @default.
- W2895813073 cites W2764958731 @default.
- W2895813073 cites W2790517631 @default.
- W2895813073 cites W2802602231 @default.
- W2895813073 cites W3138949179 @default.
- W2895813073 cites W2136218106 @default.
- W2895813073 doi "https://doi.org/10.2118/194046-stu" @default.
- W2895813073 hasPublicationYear "2018" @default.
- W2895813073 type Work @default.
- W2895813073 sameAs 2895813073 @default.
- W2895813073 citedByCount "0" @default.
- W2895813073 crossrefType "proceedings-article" @default.
- W2895813073 hasAuthorship W2895813073A5044295548 @default.
- W2895813073 hasConcept C105795698 @default.
- W2895813073 hasConcept C109007969 @default.
- W2895813073 hasConcept C114793014 @default.
- W2895813073 hasConcept C119857082 @default.
- W2895813073 hasConcept C124101348 @default.
- W2895813073 hasConcept C127162648 @default.
- W2895813073 hasConcept C127313418 @default.
- W2895813073 hasConcept C14641988 @default.
- W2895813073 hasConcept C146588470 @default.
- W2895813073 hasConcept C154881674 @default.
- W2895813073 hasConcept C161584116 @default.
- W2895813073 hasConcept C165064840 @default.
- W2895813073 hasConcept C2524010 @default.
- W2895813073 hasConcept C28719098 @default.
- W2895813073 hasConcept C31258907 @default.
- W2895813073 hasConcept C33923547 @default.
- W2895813073 hasConcept C41008148 @default.
- W2895813073 hasConcept C78762247 @default.
- W2895813073 hasConcept C81692654 @default.
- W2895813073 hasConceptScore W2895813073C105795698 @default.
- W2895813073 hasConceptScore W2895813073C109007969 @default.
- W2895813073 hasConceptScore W2895813073C114793014 @default.
- W2895813073 hasConceptScore W2895813073C119857082 @default.
- W2895813073 hasConceptScore W2895813073C124101348 @default.
- W2895813073 hasConceptScore W2895813073C127162648 @default.
- W2895813073 hasConceptScore W2895813073C127313418 @default.
- W2895813073 hasConceptScore W2895813073C14641988 @default.
- W2895813073 hasConceptScore W2895813073C146588470 @default.
- W2895813073 hasConceptScore W2895813073C154881674 @default.
- W2895813073 hasConceptScore W2895813073C161584116 @default.
- W2895813073 hasConceptScore W2895813073C165064840 @default.
- W2895813073 hasConceptScore W2895813073C2524010 @default.
- W2895813073 hasConceptScore W2895813073C28719098 @default.
- W2895813073 hasConceptScore W2895813073C31258907 @default.
- W2895813073 hasConceptScore W2895813073C33923547 @default.