Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895814790> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2895814790 endingPage "100" @default.
- W2895814790 startingPage "93" @default.
- W2895814790 abstract "Image-based fabric retrieval technique can help to develop new fabrics and manage products. Efficiently extracting features from fabric images is the key to enhance the practicality of this technology. In this paper, convolutional neural network is trained with a dataset of 19,894 different yarn-dyed fabric patterns. Center loss architecture is added to further improve the discriminative power of the network. By properly sampling from original images, the network model can efficiently extract discriminative features and achieve a retrieval accuracy of 99.89% on our test set. This performance maintains well when simpler deep architecture is used, but decreases quickly if the contents of fed fabric image are reduced." @default.
- W2895814790 created "2018-10-26" @default.
- W2895814790 creator A5006822602 @default.
- W2895814790 creator A5048907568 @default.
- W2895814790 creator A5083319940 @default.
- W2895814790 date "2018-10-14" @default.
- W2895814790 modified "2023-10-10" @default.
- W2895814790 title "Fabric Identification Using Convolutional Neural Network" @default.
- W2895814790 cites W2060300932 @default.
- W2895814790 cites W2236153118 @default.
- W2895814790 cites W2417952469 @default.
- W2895814790 cites W2499316477 @default.
- W2895814790 cites W2514933686 @default.
- W2895814790 cites W2738809161 @default.
- W2895814790 cites W2964350391 @default.
- W2895814790 cites W3099206234 @default.
- W2895814790 doi "https://doi.org/10.1007/978-3-319-99695-0_12" @default.
- W2895814790 hasPublicationYear "2018" @default.
- W2895814790 type Work @default.
- W2895814790 sameAs 2895814790 @default.
- W2895814790 citedByCount "9" @default.
- W2895814790 countsByYear W28958147902021 @default.
- W2895814790 countsByYear W28958147902022 @default.
- W2895814790 countsByYear W28958147902023 @default.
- W2895814790 crossrefType "book-chapter" @default.
- W2895814790 hasAuthorship W2895814790A5006822602 @default.
- W2895814790 hasAuthorship W2895814790A5048907568 @default.
- W2895814790 hasAuthorship W2895814790A5083319940 @default.
- W2895814790 hasConcept C116834253 @default.
- W2895814790 hasConcept C153180895 @default.
- W2895814790 hasConcept C154945302 @default.
- W2895814790 hasConcept C41008148 @default.
- W2895814790 hasConcept C59822182 @default.
- W2895814790 hasConcept C81363708 @default.
- W2895814790 hasConcept C86803240 @default.
- W2895814790 hasConceptScore W2895814790C116834253 @default.
- W2895814790 hasConceptScore W2895814790C153180895 @default.
- W2895814790 hasConceptScore W2895814790C154945302 @default.
- W2895814790 hasConceptScore W2895814790C41008148 @default.
- W2895814790 hasConceptScore W2895814790C59822182 @default.
- W2895814790 hasConceptScore W2895814790C81363708 @default.
- W2895814790 hasConceptScore W2895814790C86803240 @default.
- W2895814790 hasLocation W28958147901 @default.
- W2895814790 hasOpenAccess W2895814790 @default.
- W2895814790 hasPrimaryLocation W28958147901 @default.
- W2895814790 hasRelatedWork W2175746458 @default.
- W2895814790 hasRelatedWork W2406522397 @default.
- W2895814790 hasRelatedWork W2613736958 @default.
- W2895814790 hasRelatedWork W2732542196 @default.
- W2895814790 hasRelatedWork W2738221750 @default.
- W2895814790 hasRelatedWork W2760085659 @default.
- W2895814790 hasRelatedWork W2912288872 @default.
- W2895814790 hasRelatedWork W3012978760 @default.
- W2895814790 hasRelatedWork W3093612317 @default.
- W2895814790 hasRelatedWork W4304820710 @default.
- W2895814790 isParatext "false" @default.
- W2895814790 isRetracted "false" @default.
- W2895814790 magId "2895814790" @default.
- W2895814790 workType "book-chapter" @default.