Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895814896> ?p ?o ?g. }
- W2895814896 endingPage "163" @default.
- W2895814896 startingPage "151" @default.
- W2895814896 abstract "Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a “gesicle” to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology. Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a “gesicle” to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology." @default.
- W2895814896 created "2018-10-26" @default.
- W2895814896 creator A5040308280 @default.
- W2895814896 creator A5051586809 @default.
- W2895814896 creator A5067810513 @default.
- W2895814896 creator A5068092697 @default.
- W2895814896 creator A5070504924 @default.
- W2895814896 creator A5086681709 @default.
- W2895814896 date "2019-01-01" @default.
- W2895814896 modified "2023-10-11" @default.
- W2895814896 title "Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus" @default.
- W2895814896 cites W137643597 @default.
- W2895814896 cites W1555041989 @default.
- W2895814896 cites W1874379912 @default.
- W2895814896 cites W1966452674 @default.
- W2895814896 cites W1974124274 @default.
- W2895814896 cites W1978917197 @default.
- W2895814896 cites W1986316308 @default.
- W2895814896 cites W1990950572 @default.
- W2895814896 cites W2027195751 @default.
- W2895814896 cites W2030701238 @default.
- W2895814896 cites W2036176224 @default.
- W2895814896 cites W2066234893 @default.
- W2895814896 cites W2073212790 @default.
- W2895814896 cites W2076586496 @default.
- W2895814896 cites W2077659966 @default.
- W2895814896 cites W2080418767 @default.
- W2895814896 cites W2080662545 @default.
- W2895814896 cites W2084979113 @default.
- W2895814896 cites W2088431157 @default.
- W2895814896 cites W2093456378 @default.
- W2895814896 cites W2099960858 @default.
- W2895814896 cites W2105464583 @default.
- W2895814896 cites W2106070783 @default.
- W2895814896 cites W2116534141 @default.
- W2895814896 cites W2119680107 @default.
- W2895814896 cites W2121725913 @default.
- W2895814896 cites W2128891846 @default.
- W2895814896 cites W2143094150 @default.
- W2895814896 cites W2155233217 @default.
- W2895814896 cites W2163248265 @default.
- W2895814896 cites W2288512038 @default.
- W2895814896 cites W2289938426 @default.
- W2895814896 cites W2292390328 @default.
- W2895814896 cites W2296951880 @default.
- W2895814896 cites W2319061195 @default.
- W2895814896 cites W2326555481 @default.
- W2895814896 cites W2357241585 @default.
- W2895814896 cites W2469238969 @default.
- W2895814896 cites W2522607873 @default.
- W2895814896 cites W2534118568 @default.
- W2895814896 cites W2542848066 @default.
- W2895814896 cites W2552908886 @default.
- W2895814896 cites W2560726086 @default.
- W2895814896 cites W2588309240 @default.
- W2895814896 cites W2594540404 @default.
- W2895814896 cites W2666389453 @default.
- W2895814896 cites W2747513888 @default.
- W2895814896 cites W2754835295 @default.
- W2895814896 cites W2767063890 @default.
- W2895814896 cites W2767607752 @default.
- W2895814896 cites W2767755769 @default.
- W2895814896 cites W2775147596 @default.
- W2895814896 cites W2782295218 @default.
- W2895814896 cites W2782372577 @default.
- W2895814896 cites W2782421321 @default.
- W2895814896 cites W2791177166 @default.
- W2895814896 cites W2793196316 @default.
- W2895814896 cites W2793661486 @default.
- W2895814896 cites W2794159346 @default.
- W2895814896 cites W2806710969 @default.
- W2895814896 cites W4230953083 @default.
- W2895814896 doi "https://doi.org/10.1016/j.ymthe.2018.10.002" @default.
- W2895814896 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6318701" @default.
- W2895814896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30389355" @default.
- W2895814896 hasPublicationYear "2019" @default.
- W2895814896 type Work @default.
- W2895814896 sameAs 2895814896 @default.
- W2895814896 citedByCount "78" @default.
- W2895814896 countsByYear W28958148962019 @default.
- W2895814896 countsByYear W28958148962020 @default.
- W2895814896 countsByYear W28958148962021 @default.
- W2895814896 countsByYear W28958148962022 @default.
- W2895814896 countsByYear W28958148962023 @default.
- W2895814896 crossrefType "journal-article" @default.
- W2895814896 hasAuthorship W2895814896A5040308280 @default.
- W2895814896 hasAuthorship W2895814896A5051586809 @default.
- W2895814896 hasAuthorship W2895814896A5067810513 @default.
- W2895814896 hasAuthorship W2895814896A5068092697 @default.
- W2895814896 hasAuthorship W2895814896A5070504924 @default.
- W2895814896 hasAuthorship W2895814896A5086681709 @default.
- W2895814896 hasBestOaLocation W28958148961 @default.
- W2895814896 hasConcept C102906071 @default.
- W2895814896 hasConcept C104317684 @default.
- W2895814896 hasConcept C132455925 @default.
- W2895814896 hasConcept C141231307 @default.
- W2895814896 hasConcept C145059251 @default.
- W2895814896 hasConcept C150194340 @default.