Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895822464> ?p ?o ?g. }
- W2895822464 endingPage "266" @default.
- W2895822464 startingPage "257" @default.
- W2895822464 abstract "Sensor networks are increasingly used in all aspects of the smart city infrastructures. The stream of the data generated by sensor networks contains the information which can be used to model and manage the behavior of these infrastructures. With the expansion of the scale of the sensor networks, machine learning algorithms are increasingly used for detection of anomalies in these networks. Detection of the anomalies in industrial control network should be performed in real time. An important issue in computer and industrial sensor networks is the problem of latency and jitter. In this paper, a metaheuristic algorithm for optimal detection of the unusual behaviors and anomalies in the industrial sensor networks in presence of latency and jitter is proposed. The proposed algorithm uses the recently proposed optimizers and a neural network for modeling the behavior of the sensor network. The experimental results show that the proposed algorithm is capable of recognizing the anomalies in the industrial sensor networks with high accuracy." @default.
- W2895822464 created "2018-10-26" @default.
- W2895822464 creator A5014735546 @default.
- W2895822464 creator A5031073029 @default.
- W2895822464 creator A5034492145 @default.
- W2895822464 date "2018-10-15" @default.
- W2895822464 modified "2023-10-02" @default.
- W2895822464 title "Metaheuristic neural networks for anomaly recognition in industrial sensor networks with packet latency and jitter for smart infrastructures" @default.
- W2895822464 cites W107817146 @default.
- W2895822464 cites W2002302337 @default.
- W2895822464 cites W2002619227 @default.
- W2895822464 cites W2023782941 @default.
- W2895822464 cites W2030617739 @default.
- W2895822464 cites W2041587044 @default.
- W2895822464 cites W2044723126 @default.
- W2895822464 cites W2061243822 @default.
- W2895822464 cites W2061438946 @default.
- W2895822464 cites W2061737329 @default.
- W2895822464 cites W2075478098 @default.
- W2895822464 cites W2091236895 @default.
- W2895822464 cites W2099741732 @default.
- W2895822464 cites W2118131149 @default.
- W2895822464 cites W2131060714 @default.
- W2895822464 cites W214166028 @default.
- W2895822464 cites W2154107003 @default.
- W2895822464 cites W2154971967 @default.
- W2895822464 cites W2168081761 @default.
- W2895822464 cites W2201072802 @default.
- W2895822464 cites W2277630828 @default.
- W2895822464 cites W2289571706 @default.
- W2895822464 cites W2290151134 @default.
- W2895822464 cites W2294798173 @default.
- W2895822464 cites W2295637543 @default.
- W2895822464 cites W2329795475 @default.
- W2895822464 cites W2334853001 @default.
- W2895822464 cites W2346839736 @default.
- W2895822464 cites W2357203454 @default.
- W2895822464 cites W2510535264 @default.
- W2895822464 cites W2515527499 @default.
- W2895822464 cites W2531036915 @default.
- W2895822464 cites W2537702951 @default.
- W2895822464 cites W2559568760 @default.
- W2895822464 cites W2594434602 @default.
- W2895822464 cites W2609968973 @default.
- W2895822464 cites W2796604124 @default.
- W2895822464 cites W2797104929 @default.
- W2895822464 cites W2798150676 @default.
- W2895822464 cites W2808432925 @default.
- W2895822464 cites W2890688913 @default.
- W2895822464 cites W3103023059 @default.
- W2895822464 cites W318320026 @default.
- W2895822464 cites W65738273 @default.
- W2895822464 doi "https://doi.org/10.1080/1206212x.2018.1533613" @default.
- W2895822464 hasPublicationYear "2018" @default.
- W2895822464 type Work @default.
- W2895822464 sameAs 2895822464 @default.
- W2895822464 citedByCount "11" @default.
- W2895822464 countsByYear W28958224642018 @default.
- W2895822464 countsByYear W28958224642019 @default.
- W2895822464 countsByYear W28958224642020 @default.
- W2895822464 countsByYear W28958224642021 @default.
- W2895822464 countsByYear W28958224642022 @default.
- W2895822464 countsByYear W28958224642023 @default.
- W2895822464 crossrefType "journal-article" @default.
- W2895822464 hasAuthorship W2895822464A5014735546 @default.
- W2895822464 hasAuthorship W2895822464A5031073029 @default.
- W2895822464 hasAuthorship W2895822464A5034492145 @default.
- W2895822464 hasConcept C109718341 @default.
- W2895822464 hasConcept C134652429 @default.
- W2895822464 hasConcept C154945302 @default.
- W2895822464 hasConcept C158379750 @default.
- W2895822464 hasConcept C24590314 @default.
- W2895822464 hasConcept C31258907 @default.
- W2895822464 hasConcept C41008148 @default.
- W2895822464 hasConcept C50644808 @default.
- W2895822464 hasConcept C739882 @default.
- W2895822464 hasConcept C76155785 @default.
- W2895822464 hasConcept C79403827 @default.
- W2895822464 hasConcept C82876162 @default.
- W2895822464 hasConceptScore W2895822464C109718341 @default.
- W2895822464 hasConceptScore W2895822464C134652429 @default.
- W2895822464 hasConceptScore W2895822464C154945302 @default.
- W2895822464 hasConceptScore W2895822464C158379750 @default.
- W2895822464 hasConceptScore W2895822464C24590314 @default.
- W2895822464 hasConceptScore W2895822464C31258907 @default.
- W2895822464 hasConceptScore W2895822464C41008148 @default.
- W2895822464 hasConceptScore W2895822464C50644808 @default.
- W2895822464 hasConceptScore W2895822464C739882 @default.
- W2895822464 hasConceptScore W2895822464C76155785 @default.
- W2895822464 hasConceptScore W2895822464C79403827 @default.
- W2895822464 hasConceptScore W2895822464C82876162 @default.
- W2895822464 hasIssue "3" @default.
- W2895822464 hasLocation W28958224641 @default.
- W2895822464 hasOpenAccess W2895822464 @default.
- W2895822464 hasPrimaryLocation W28958224641 @default.
- W2895822464 hasRelatedWork W1482310120 @default.
- W2895822464 hasRelatedWork W1490770987 @default.
- W2895822464 hasRelatedWork W1986020708 @default.