Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895823210> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2895823210 abstract "The quality of automatic app feature extraction from app reviews depends on various aspects, e.g. the feature extraction method, training and evaluation datasets, evaluation method etc. Annotation guidelines used to guide the annotation of training and evaluation datasets can have a considerable impact to the quality of the whole system but it is one of the aspects that has been commonly overlooked. In this study, we explore the effects of annotation guidelines to the quality of app feature extraction. As a main result, we propose several changes to the existing annotation guidelines with a goal of making the extracted app features more useful and informative to the app developers. We test the proposed changes via simulating the application of the new annotation guidelines and then evaluating the performance of the supervised machine learning models trained on datasets annotated with initial and simulated annotation guidelines. While the overall performance of automatic app feature extraction remains the same as compared to the model trained on the dataset with initial annotations, the features extracted by the model trained on the dataset with simulated new annotations are less noisy and more informative to the app developers. Secondly, we are interested in what kind of annotated training data is necessary for training an automatic app feature extraction model. In particular, we explore whether the training set should contain annotated app reviews from those apps/app categories on which the model is subsequently planned to be applied, or is it sufficient to have annotated app reviews from any app available for training, even when these apps are from very different categories compared to the test app. Our experiments show that having annotated training reviews from the test app is not necessary although including them into training set helps to improve recall. Furthermore, we test whether augmenting the training set with annotated product reviews helps to improve the performance of app feature extraction. We find that the models trained on augmented training set lead to improved recall but at the cost of the drop in precision." @default.
- W2895823210 created "2018-10-26" @default.
- W2895823210 creator A5022214666 @default.
- W2895823210 creator A5035358986 @default.
- W2895823210 creator A5067965596 @default.
- W2895823210 date "2018-10-01" @default.
- W2895823210 modified "2023-10-02" @default.
- W2895823210 title "The Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews" @default.
- W2895823210 cites W1880262756 @default.
- W2895823210 cites W1944317963 @default.
- W2895823210 cites W2085465189 @default.
- W2895823210 cites W2112143630 @default.
- W2895823210 cites W2126574721 @default.
- W2895823210 cites W2135737105 @default.
- W2895823210 cites W2147880316 @default.
- W2895823210 cites W2158899491 @default.
- W2895823210 cites W2159457224 @default.
- W2895823210 cites W2199736351 @default.
- W2895823210 cites W2203955288 @default.
- W2895823210 cites W2243129849 @default.
- W2895823210 cites W2251648804 @default.
- W2895823210 cites W2252024663 @default.
- W2895823210 cites W2399358428 @default.
- W2895823210 cites W2400677183 @default.
- W2895823210 cites W2427312199 @default.
- W2895823210 cites W2465978385 @default.
- W2895823210 cites W2548737725 @default.
- W2895823210 cites W2756832710 @default.
- W2895823210 cites W2758253540 @default.
- W2895823210 cites W2797779452 @default.
- W2895823210 cites W2950133940 @default.
- W2895823210 cites W2952558624 @default.
- W2895823210 doi "https://doi.org/10.31219/osf.io/wazhf" @default.
- W2895823210 hasPublicationYear "2018" @default.
- W2895823210 type Work @default.
- W2895823210 sameAs 2895823210 @default.
- W2895823210 citedByCount "3" @default.
- W2895823210 countsByYear W28958232102019 @default.
- W2895823210 countsByYear W28958232102020 @default.
- W2895823210 countsByYear W28958232102021 @default.
- W2895823210 crossrefType "posted-content" @default.
- W2895823210 hasAuthorship W2895823210A5022214666 @default.
- W2895823210 hasAuthorship W2895823210A5035358986 @default.
- W2895823210 hasAuthorship W2895823210A5067965596 @default.
- W2895823210 hasBestOaLocation W28958232102 @default.
- W2895823210 hasConcept C111472728 @default.
- W2895823210 hasConcept C119857082 @default.
- W2895823210 hasConcept C124101348 @default.
- W2895823210 hasConcept C138885662 @default.
- W2895823210 hasConcept C154945302 @default.
- W2895823210 hasConcept C23123220 @default.
- W2895823210 hasConcept C2776321320 @default.
- W2895823210 hasConcept C2776401178 @default.
- W2895823210 hasConcept C2779530757 @default.
- W2895823210 hasConcept C41008148 @default.
- W2895823210 hasConcept C41895202 @default.
- W2895823210 hasConcept C51632099 @default.
- W2895823210 hasConcept C52622490 @default.
- W2895823210 hasConceptScore W2895823210C111472728 @default.
- W2895823210 hasConceptScore W2895823210C119857082 @default.
- W2895823210 hasConceptScore W2895823210C124101348 @default.
- W2895823210 hasConceptScore W2895823210C138885662 @default.
- W2895823210 hasConceptScore W2895823210C154945302 @default.
- W2895823210 hasConceptScore W2895823210C23123220 @default.
- W2895823210 hasConceptScore W2895823210C2776321320 @default.
- W2895823210 hasConceptScore W2895823210C2776401178 @default.
- W2895823210 hasConceptScore W2895823210C2779530757 @default.
- W2895823210 hasConceptScore W2895823210C41008148 @default.
- W2895823210 hasConceptScore W2895823210C41895202 @default.
- W2895823210 hasConceptScore W2895823210C51632099 @default.
- W2895823210 hasConceptScore W2895823210C52622490 @default.
- W2895823210 hasLocation W28958232101 @default.
- W2895823210 hasLocation W28958232102 @default.
- W2895823210 hasLocation W28958232103 @default.
- W2895823210 hasOpenAccess W2895823210 @default.
- W2895823210 hasPrimaryLocation W28958232101 @default.
- W2895823210 hasRelatedWork W1530310619 @default.
- W2895823210 hasRelatedWork W1600302708 @default.
- W2895823210 hasRelatedWork W2050418754 @default.
- W2895823210 hasRelatedWork W2139126703 @default.
- W2895823210 hasRelatedWork W2293793840 @default.
- W2895823210 hasRelatedWork W2404197881 @default.
- W2895823210 hasRelatedWork W2407933974 @default.
- W2895823210 hasRelatedWork W2999699891 @default.
- W2895823210 hasRelatedWork W77472803 @default.
- W2895823210 hasRelatedWork W1991529045 @default.
- W2895823210 isParatext "false" @default.
- W2895823210 isRetracted "false" @default.
- W2895823210 magId "2895823210" @default.
- W2895823210 workType "article" @default.