Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895824518> ?p ?o ?g. }
- W2895824518 abstract "Generative Adversarial Networks (GANs) have experienced a recent surge in popularity, performing competitively in a variety of tasks, especially in computer vision. However, GAN training has shown limited success in natural language processing. This is largely because sequences of text are discrete, and thus gradients cannot propagate from the discriminator to the generator. Recent solutions use reinforcement learning to propagate approximate gradients to the generator, but this is inefficient to train. We propose to utilize an autoencoder to learn a low-dimensional representation of sentences. A GAN is then trained to generate its own vectors in this space, which decode to realistic utterances. We report both random and interpolated samples from the generator. Visualization of sentence vectors indicate our model correctly learns the latent space of the autoencoder. Both human ratings and BLEU scores show that our model generates realistic text against competitive baselines." @default.
- W2895824518 created "2018-10-26" @default.
- W2895824518 creator A5032351486 @default.
- W2895824518 creator A5071360545 @default.
- W2895824518 date "2018-10-11" @default.
- W2895824518 modified "2023-09-27" @default.
- W2895824518 title "Adversarial Text Generation Without Reinforcement Learning." @default.
- W2895824518 cites W1522301498 @default.
- W2895824518 cites W1843891098 @default.
- W2895824518 cites W2064675550 @default.
- W2895824518 cites W2099471712 @default.
- W2895824518 cites W2101105183 @default.
- W2895824518 cites W2140679639 @default.
- W2895824518 cites W2187089797 @default.
- W2895824518 cites W2194775991 @default.
- W2895824518 cites W2210838531 @default.
- W2895824518 cites W2542835211 @default.
- W2895824518 cites W2604799547 @default.
- W2895824518 cites W2605135824 @default.
- W2895824518 cites W2684734919 @default.
- W2895824518 cites W2739748921 @default.
- W2895824518 cites W2949433733 @default.
- W2895824518 cites W2950748123 @default.
- W2895824518 cites W2951184134 @default.
- W2895824518 cites W2951520714 @default.
- W2895824518 cites W2962883855 @default.
- W2895824518 cites W2963470893 @default.
- W2895824518 cites W2963790827 @default.
- W2895824518 cites W2964017345 @default.
- W2895824518 cites W2964024144 @default.
- W2895824518 cites W2964268978 @default.
- W2895824518 hasPublicationYear "2018" @default.
- W2895824518 type Work @default.
- W2895824518 sameAs 2895824518 @default.
- W2895824518 citedByCount "5" @default.
- W2895824518 countsByYear W28958245182019 @default.
- W2895824518 countsByYear W28958245182021 @default.
- W2895824518 crossrefType "posted-content" @default.
- W2895824518 hasAuthorship W2895824518A5032351486 @default.
- W2895824518 hasAuthorship W2895824518A5071360545 @default.
- W2895824518 hasConcept C101738243 @default.
- W2895824518 hasConcept C111919701 @default.
- W2895824518 hasConcept C119857082 @default.
- W2895824518 hasConcept C121332964 @default.
- W2895824518 hasConcept C136197465 @default.
- W2895824518 hasConcept C154945302 @default.
- W2895824518 hasConcept C15744967 @default.
- W2895824518 hasConcept C163258240 @default.
- W2895824518 hasConcept C17744445 @default.
- W2895824518 hasConcept C199539241 @default.
- W2895824518 hasConcept C204321447 @default.
- W2895824518 hasConcept C2776359362 @default.
- W2895824518 hasConcept C2777530160 @default.
- W2895824518 hasConcept C2778572836 @default.
- W2895824518 hasConcept C2779803651 @default.
- W2895824518 hasConcept C2780586970 @default.
- W2895824518 hasConcept C2780992000 @default.
- W2895824518 hasConcept C36464697 @default.
- W2895824518 hasConcept C37736160 @default.
- W2895824518 hasConcept C39890363 @default.
- W2895824518 hasConcept C41008148 @default.
- W2895824518 hasConcept C50644808 @default.
- W2895824518 hasConcept C59404180 @default.
- W2895824518 hasConcept C62520636 @default.
- W2895824518 hasConcept C76155785 @default.
- W2895824518 hasConcept C77805123 @default.
- W2895824518 hasConcept C94625758 @default.
- W2895824518 hasConcept C94915269 @default.
- W2895824518 hasConcept C97541855 @default.
- W2895824518 hasConceptScore W2895824518C101738243 @default.
- W2895824518 hasConceptScore W2895824518C111919701 @default.
- W2895824518 hasConceptScore W2895824518C119857082 @default.
- W2895824518 hasConceptScore W2895824518C121332964 @default.
- W2895824518 hasConceptScore W2895824518C136197465 @default.
- W2895824518 hasConceptScore W2895824518C154945302 @default.
- W2895824518 hasConceptScore W2895824518C15744967 @default.
- W2895824518 hasConceptScore W2895824518C163258240 @default.
- W2895824518 hasConceptScore W2895824518C17744445 @default.
- W2895824518 hasConceptScore W2895824518C199539241 @default.
- W2895824518 hasConceptScore W2895824518C204321447 @default.
- W2895824518 hasConceptScore W2895824518C2776359362 @default.
- W2895824518 hasConceptScore W2895824518C2777530160 @default.
- W2895824518 hasConceptScore W2895824518C2778572836 @default.
- W2895824518 hasConceptScore W2895824518C2779803651 @default.
- W2895824518 hasConceptScore W2895824518C2780586970 @default.
- W2895824518 hasConceptScore W2895824518C2780992000 @default.
- W2895824518 hasConceptScore W2895824518C36464697 @default.
- W2895824518 hasConceptScore W2895824518C37736160 @default.
- W2895824518 hasConceptScore W2895824518C39890363 @default.
- W2895824518 hasConceptScore W2895824518C41008148 @default.
- W2895824518 hasConceptScore W2895824518C50644808 @default.
- W2895824518 hasConceptScore W2895824518C59404180 @default.
- W2895824518 hasConceptScore W2895824518C62520636 @default.
- W2895824518 hasConceptScore W2895824518C76155785 @default.
- W2895824518 hasConceptScore W2895824518C77805123 @default.
- W2895824518 hasConceptScore W2895824518C94625758 @default.
- W2895824518 hasConceptScore W2895824518C94915269 @default.
- W2895824518 hasConceptScore W2895824518C97541855 @default.
- W2895824518 hasLocation W28958245181 @default.
- W2895824518 hasOpenAccess W2895824518 @default.