Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895826127> ?p ?o ?g. }
- W2895826127 endingPage "4100" @default.
- W2895826127 startingPage "4086" @default.
- W2895826127 abstract "Recently, the semisupervised learning for hyperspectral image classification (HIC) has attracted increasing attention. The previous semisupervised methods were usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we propose a novel Laplacian least squares support vector machine in sum space (Lap-LSSVM-SS) for semisupervised HIC with multiscale kernels, which can simultaneously deal with the high and low frequency components of the target classification function with small and large scale kernels, respectively. Furthermore, due to its representation theorem, a noniterative algorithm based on the closed-form classification function of Lap-LSSVM-SS is provided to make a rapid semisupervised HIC possible in the multiple kernel learning framework. The proposed method can solve the multiclass problem of hyperspectral dataset directly. We further reduce the storage and computation cost of the proposed Lap-LSSVM-SS method with the random sampling strategy, i.e., Lap-LSSVM-SS-RS. We also show that the Lap-LSSVM-SS-RS method has near-optimal classification performance when the number of local Lap-LSSVM-SS machines is not too large. The experimental results on two real hyperspectral datasets demonstrate that Lap-LSSVM-SS-RS yields superior classification performance over the conventional semisupervised classifiers (e.g., LapSVM, S4VM, and BagSVMs, etc.) in challenging small training labeled samples and a large amount of unlabeled samples." @default.
- W2895826127 created "2018-10-26" @default.
- W2895826127 creator A5010049254 @default.
- W2895826127 creator A5015193719 @default.
- W2895826127 creator A5042802004 @default.
- W2895826127 creator A5045033208 @default.
- W2895826127 creator A5049264813 @default.
- W2895826127 date "2018-11-01" @default.
- W2895826127 modified "2023-10-17" @default.
- W2895826127 title "Semisupervised Hyperspectral Image Classification via Laplacian Least Squares Support Vector Machine in Sum Space and Random Sampling" @default.
- W2895826127 cites W1971891155 @default.
- W2895826127 cites W1983320747 @default.
- W2895826127 cites W1985152886 @default.
- W2895826127 cites W2001298023 @default.
- W2895826127 cites W2008509935 @default.
- W2895826127 cites W2009835454 @default.
- W2895826127 cites W2019288156 @default.
- W2895826127 cites W2029279587 @default.
- W2895826127 cites W2078495963 @default.
- W2895826127 cites W2092745549 @default.
- W2895826127 cites W2098057602 @default.
- W2895826127 cites W2106092565 @default.
- W2895826127 cites W2117609097 @default.
- W2895826127 cites W2142012908 @default.
- W2895826127 cites W2146611644 @default.
- W2895826127 cites W2152057649 @default.
- W2895826127 cites W2153409933 @default.
- W2895826127 cites W2164330327 @default.
- W2895826127 cites W2168880067 @default.
- W2895826127 cites W2169042894 @default.
- W2895826127 cites W2528211483 @default.
- W2895826127 cites W2770495564 @default.
- W2895826127 cites W4245558064 @default.
- W2895826127 cites W4302564868 @default.
- W2895826127 doi "https://doi.org/10.1109/jstars.2018.2873051" @default.
- W2895826127 hasPublicationYear "2018" @default.
- W2895826127 type Work @default.
- W2895826127 sameAs 2895826127 @default.
- W2895826127 citedByCount "9" @default.
- W2895826127 countsByYear W28958261272019 @default.
- W2895826127 countsByYear W28958261272021 @default.
- W2895826127 countsByYear W28958261272022 @default.
- W2895826127 countsByYear W28958261272023 @default.
- W2895826127 crossrefType "journal-article" @default.
- W2895826127 hasAuthorship W2895826127A5010049254 @default.
- W2895826127 hasAuthorship W2895826127A5015193719 @default.
- W2895826127 hasAuthorship W2895826127A5042802004 @default.
- W2895826127 hasAuthorship W2895826127A5045033208 @default.
- W2895826127 hasAuthorship W2895826127A5049264813 @default.
- W2895826127 hasConcept C106131492 @default.
- W2895826127 hasConcept C114614502 @default.
- W2895826127 hasConcept C115961682 @default.
- W2895826127 hasConcept C122280245 @default.
- W2895826127 hasConcept C12267149 @default.
- W2895826127 hasConcept C134306372 @default.
- W2895826127 hasConcept C140779682 @default.
- W2895826127 hasConcept C145828037 @default.
- W2895826127 hasConcept C153180895 @default.
- W2895826127 hasConcept C154945302 @default.
- W2895826127 hasConcept C159078339 @default.
- W2895826127 hasConcept C165700671 @default.
- W2895826127 hasConcept C31972630 @default.
- W2895826127 hasConcept C33923547 @default.
- W2895826127 hasConcept C41008148 @default.
- W2895826127 hasConcept C62799726 @default.
- W2895826127 hasConcept C74193536 @default.
- W2895826127 hasConcept C75294576 @default.
- W2895826127 hasConcept C80884492 @default.
- W2895826127 hasConceptScore W2895826127C106131492 @default.
- W2895826127 hasConceptScore W2895826127C114614502 @default.
- W2895826127 hasConceptScore W2895826127C115961682 @default.
- W2895826127 hasConceptScore W2895826127C122280245 @default.
- W2895826127 hasConceptScore W2895826127C12267149 @default.
- W2895826127 hasConceptScore W2895826127C134306372 @default.
- W2895826127 hasConceptScore W2895826127C140779682 @default.
- W2895826127 hasConceptScore W2895826127C145828037 @default.
- W2895826127 hasConceptScore W2895826127C153180895 @default.
- W2895826127 hasConceptScore W2895826127C154945302 @default.
- W2895826127 hasConceptScore W2895826127C159078339 @default.
- W2895826127 hasConceptScore W2895826127C165700671 @default.
- W2895826127 hasConceptScore W2895826127C31972630 @default.
- W2895826127 hasConceptScore W2895826127C33923547 @default.
- W2895826127 hasConceptScore W2895826127C41008148 @default.
- W2895826127 hasConceptScore W2895826127C62799726 @default.
- W2895826127 hasConceptScore W2895826127C74193536 @default.
- W2895826127 hasConceptScore W2895826127C75294576 @default.
- W2895826127 hasConceptScore W2895826127C80884492 @default.
- W2895826127 hasFunder F4320321001 @default.
- W2895826127 hasIssue "11" @default.
- W2895826127 hasLocation W28958261271 @default.
- W2895826127 hasOpenAccess W2895826127 @default.
- W2895826127 hasPrimaryLocation W28958261271 @default.
- W2895826127 hasRelatedWork W2027055931 @default.
- W2895826127 hasRelatedWork W2038278625 @default.
- W2895826127 hasRelatedWork W2051197289 @default.
- W2895826127 hasRelatedWork W2056016498 @default.
- W2895826127 hasRelatedWork W2095593773 @default.
- W2895826127 hasRelatedWork W2097028249 @default.