Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895842572> ?p ?o ?g. }
- W2895842572 endingPage "48" @default.
- W2895842572 startingPage "37" @default.
- W2895842572 abstract "The study of biological systems at a system level has become a reality due to the increasing powerful computational approaches able to handle increasingly larger datasets. Uncovering the dynamic nature of gene regulatory networks in order to attain a system level understanding and improve the predictive power of biological models is an important research field in systems biology. The task itself presents several challenges, since the problem is of combinatorial nature and highly depends on several biological constraints and also the intended application. Given the intrinsic interdisciplinary nature of gene regulatory network inference, we present a review on the currently available approaches, their challenges and limitations. We propose guidelines to select the most appropriate method considering the underlying assumptions and fundamental biological and data constraints." @default.
- W2895842572 created "2018-10-26" @default.
- W2895842572 creator A5006935937 @default.
- W2895842572 creator A5013662450 @default.
- W2895842572 creator A5013883233 @default.
- W2895842572 creator A5027859822 @default.
- W2895842572 creator A5054613905 @default.
- W2895842572 date "2018-12-01" @default.
- W2895842572 modified "2023-09-30" @default.
- W2895842572 title "A guide to gene regulatory network inference for obtaining predictive solutions: Underlying assumptions and fundamental biological and data constraints" @default.
- W2895842572 cites W1500036797 @default.
- W2895842572 cites W1567580433 @default.
- W2895842572 cites W1963522244 @default.
- W2895842572 cites W1966954598 @default.
- W2895842572 cites W1971224531 @default.
- W2895842572 cites W1973632067 @default.
- W2895842572 cites W1976645012 @default.
- W2895842572 cites W1982309495 @default.
- W2895842572 cites W1989727964 @default.
- W2895842572 cites W1992960340 @default.
- W2895842572 cites W1994958031 @default.
- W2895842572 cites W1995875735 @default.
- W2895842572 cites W2001334414 @default.
- W2895842572 cites W2015722366 @default.
- W2895842572 cites W2034662766 @default.
- W2895842572 cites W2037544231 @default.
- W2895842572 cites W2044525257 @default.
- W2895842572 cites W2048674295 @default.
- W2895842572 cites W2063978378 @default.
- W2895842572 cites W2070544578 @default.
- W2895842572 cites W2076375071 @default.
- W2895842572 cites W2076513103 @default.
- W2895842572 cites W2094587261 @default.
- W2895842572 cites W2097508937 @default.
- W2895842572 cites W2098086436 @default.
- W2895842572 cites W2105129830 @default.
- W2895842572 cites W2109384743 @default.
- W2895842572 cites W2117994680 @default.
- W2895842572 cites W2120526231 @default.
- W2895842572 cites W2122708083 @default.
- W2895842572 cites W2126531665 @default.
- W2895842572 cites W2126874285 @default.
- W2895842572 cites W2128088446 @default.
- W2895842572 cites W2132555912 @default.
- W2895842572 cites W2134423940 @default.
- W2895842572 cites W2135744958 @default.
- W2895842572 cites W2141316905 @default.
- W2895842572 cites W2148661959 @default.
- W2895842572 cites W2148799578 @default.
- W2895842572 cites W2152482800 @default.
- W2895842572 cites W2153355914 @default.
- W2895842572 cites W2155205047 @default.
- W2895842572 cites W2161511352 @default.
- W2895842572 cites W2165700458 @default.
- W2895842572 cites W2194985241 @default.
- W2895842572 cites W2323257522 @default.
- W2895842572 cites W2327972292 @default.
- W2895842572 cites W2353453863 @default.
- W2895842572 cites W2400776848 @default.
- W2895842572 cites W2498761000 @default.
- W2895842572 cites W2535035037 @default.
- W2895842572 cites W2586633795 @default.
- W2895842572 cites W2616754551 @default.
- W2895842572 cites W2757234574 @default.
- W2895842572 cites W2763570517 @default.
- W2895842572 cites W2949144734 @default.
- W2895842572 cites W3099289621 @default.
- W2895842572 doi "https://doi.org/10.1016/j.biosystems.2018.10.008" @default.
- W2895842572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30312740" @default.
- W2895842572 hasPublicationYear "2018" @default.
- W2895842572 type Work @default.
- W2895842572 sameAs 2895842572 @default.
- W2895842572 citedByCount "21" @default.
- W2895842572 countsByYear W28958425722019 @default.
- W2895842572 countsByYear W28958425722020 @default.
- W2895842572 countsByYear W28958425722021 @default.
- W2895842572 countsByYear W28958425722022 @default.
- W2895842572 countsByYear W28958425722023 @default.
- W2895842572 crossrefType "journal-article" @default.
- W2895842572 hasAuthorship W2895842572A5006935937 @default.
- W2895842572 hasAuthorship W2895842572A5013662450 @default.
- W2895842572 hasAuthorship W2895842572A5013883233 @default.
- W2895842572 hasAuthorship W2895842572A5027859822 @default.
- W2895842572 hasAuthorship W2895842572A5054613905 @default.
- W2895842572 hasConcept C104317684 @default.
- W2895842572 hasConcept C111472728 @default.
- W2895842572 hasConcept C119857082 @default.
- W2895842572 hasConcept C138885662 @default.
- W2895842572 hasConcept C150194340 @default.
- W2895842572 hasConcept C152662350 @default.
- W2895842572 hasConcept C154945302 @default.
- W2895842572 hasConcept C162324750 @default.
- W2895842572 hasConcept C187736073 @default.
- W2895842572 hasConcept C201797286 @default.
- W2895842572 hasConcept C202444582 @default.
- W2895842572 hasConcept C2522767166 @default.
- W2895842572 hasConcept C2776214188 @default.
- W2895842572 hasConcept C2778136018 @default.