Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895844746> ?p ?o ?g. }
- W2895844746 abstract "Due to recent advances in sequencing technologies, sequence-based analysis has been widely applied to detecting copy number variations (CNVs). There are several techniques for identifying CNVs using next generation sequencing (NGS) data, however methods employing depth of coverage or read depth (RD) have recently become a main technique to identify CNVs. The main assumption of the RD-based CNV detection methods is that the readcount value at a specific genomic location is correlated with the copy number at that location. However, readcount data’s noise and biases distort the association between the readcounts and copy numbers. For more accurate CNV identification, these biases and noise need to be mitigated. In this work, to detect CNVs more precisely and efficiently we propose a novel denoising method based on the total variation approach and the Taut String algorithm. To investigate the performance of the proposed denoising method, we computed sensitivities, false discovery rates and specificities of CNV detection when employing denoising, using both simulated and real data. We also compared the performance of the proposed denoising method, Taut String, with that of the commonly used approaches such as moving average (MA) and discrete wavelet transforms (DWT) in terms of sensitivity of detecting true CNVs and time complexity. The results show that Taut String works better than DWT and MA and has a better power to identify very narrow CNVs. The ability of Taut String denoising in preserving CNV segments’ breakpoints and narrow CNVs increases the detection accuracy of segmentation algorithms, resulting in higher sensitivities and lower false discovery rates. In this study, we proposed a new denoising method for sequence-based CNV detection based on a signal processing technique. Existing CNV detection algorithms identify many false CNV segments and fail in detecting short CNV segments due to noise and biases. Employing an effective and efficient denoising method can significantly enhance the detection accuracy of the CNV segmentation algorithms. Advanced denoising methods from the signal processing field can be employed to implement such algorithms. We showed that non-linear denoising methods that consider sparsity and piecewise constant characteristics of CNV data result in better performance in CNV detection." @default.
- W2895844746 created "2018-10-26" @default.
- W2895844746 creator A5010254642 @default.
- W2895844746 creator A5043383193 @default.
- W2895844746 creator A5075494433 @default.
- W2895844746 date "2018-10-01" @default.
- W2895844746 modified "2023-10-09" @default.
- W2895844746 title "Noise cancellation using total variation for copy number variation detection" @default.
- W2895844746 cites W1542475324 @default.
- W2895844746 cites W1608553670 @default.
- W2895844746 cites W1988033469 @default.
- W2895844746 cites W2002843742 @default.
- W2895844746 cites W2010498181 @default.
- W2895844746 cites W2012151892 @default.
- W2895844746 cites W2014606320 @default.
- W2895844746 cites W2017535462 @default.
- W2895844746 cites W2018604728 @default.
- W2895844746 cites W2022385074 @default.
- W2895844746 cites W2032779485 @default.
- W2895844746 cites W2034197594 @default.
- W2895844746 cites W2035593347 @default.
- W2895844746 cites W2048620141 @default.
- W2895844746 cites W2049491159 @default.
- W2895844746 cites W2050023599 @default.
- W2895844746 cites W2074746593 @default.
- W2895844746 cites W2075304537 @default.
- W2895844746 cites W2077735107 @default.
- W2895844746 cites W2080238139 @default.
- W2895844746 cites W2085755265 @default.
- W2895844746 cites W2090144921 @default.
- W2895844746 cites W2092203068 @default.
- W2895844746 cites W2095855903 @default.
- W2895844746 cites W2097331151 @default.
- W2895844746 cites W2102619694 @default.
- W2895844746 cites W2102941013 @default.
- W2895844746 cites W2103441770 @default.
- W2895844746 cites W2107126369 @default.
- W2895844746 cites W2107751484 @default.
- W2895844746 cites W2108274478 @default.
- W2895844746 cites W2112706474 @default.
- W2895844746 cites W2116753165 @default.
- W2895844746 cites W2118526609 @default.
- W2895844746 cites W2120950849 @default.
- W2895844746 cites W2121144826 @default.
- W2895844746 cites W2121743948 @default.
- W2895844746 cites W2124873881 @default.
- W2895844746 cites W2127104203 @default.
- W2895844746 cites W2127134553 @default.
- W2895844746 cites W2130794381 @default.
- W2895844746 cites W2131088968 @default.
- W2895844746 cites W2131478115 @default.
- W2895844746 cites W2133174470 @default.
- W2895844746 cites W2134151441 @default.
- W2895844746 cites W2136723735 @default.
- W2895844746 cites W2137779717 @default.
- W2895844746 cites W2140888103 @default.
- W2895844746 cites W2144759168 @default.
- W2895844746 cites W2145868259 @default.
- W2895844746 cites W2146842127 @default.
- W2895844746 cites W2149118757 @default.
- W2895844746 cites W2150506261 @default.
- W2895844746 cites W2153065499 @default.
- W2895844746 cites W2155943701 @default.
- W2895844746 cites W2158297569 @default.
- W2895844746 cites W2160444236 @default.
- W2895844746 cites W2160612450 @default.
- W2895844746 cites W2162212014 @default.
- W2895844746 cites W2162894628 @default.
- W2895844746 cites W2162927194 @default.
- W2895844746 cites W2230465815 @default.
- W2895844746 cites W2410423566 @default.
- W2895844746 cites W2412948894 @default.
- W2895844746 cites W2617530335 @default.
- W2895844746 cites W2771102301 @default.
- W2895844746 cites W4250313260 @default.
- W2895844746 cites W4250507776 @default.
- W2895844746 doi "https://doi.org/10.1186/s12859-018-2332-x" @default.
- W2895844746 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6196408" @default.
- W2895844746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30343665" @default.
- W2895844746 hasPublicationYear "2018" @default.
- W2895844746 type Work @default.
- W2895844746 sameAs 2895844746 @default.
- W2895844746 citedByCount "6" @default.
- W2895844746 countsByYear W28958447462018 @default.
- W2895844746 countsByYear W28958447462019 @default.
- W2895844746 countsByYear W28958447462020 @default.
- W2895844746 countsByYear W28958447462021 @default.
- W2895844746 countsByYear W28958447462023 @default.
- W2895844746 crossrefType "journal-article" @default.
- W2895844746 hasAuthorship W2895844746A5010254642 @default.
- W2895844746 hasAuthorship W2895844746A5043383193 @default.
- W2895844746 hasAuthorship W2895844746A5075494433 @default.
- W2895844746 hasBestOaLocation W28958447461 @default.
- W2895844746 hasConcept C104317684 @default.
- W2895844746 hasConcept C11413529 @default.
- W2895844746 hasConcept C115961682 @default.
- W2895844746 hasConcept C120821319 @default.
- W2895844746 hasConcept C121332964 @default.
- W2895844746 hasConcept C124101348 @default.
- W2895844746 hasConcept C124942203 @default.