Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895846736> ?p ?o ?g. }
- W2895846736 abstract "Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases." @default.
- W2895846736 created "2018-10-26" @default.
- W2895846736 creator A5016150153 @default.
- W2895846736 creator A5018874846 @default.
- W2895846736 creator A5021829090 @default.
- W2895846736 creator A5052453820 @default.
- W2895846736 creator A5064734404 @default.
- W2895846736 creator A5011570868 @default.
- W2895846736 date "2019-03-07" @default.
- W2895846736 modified "2023-10-14" @default.
- W2895846736 title "Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines" @default.
- W2895846736 cites W1968208108 @default.
- W2895846736 cites W1974097079 @default.
- W2895846736 cites W1974405965 @default.
- W2895846736 cites W1976208239 @default.
- W2895846736 cites W1983457630 @default.
- W2895846736 cites W1997861572 @default.
- W2895846736 cites W2000276129 @default.
- W2895846736 cites W2005167168 @default.
- W2895846736 cites W2006062375 @default.
- W2895846736 cites W2016465434 @default.
- W2895846736 cites W2045218821 @default.
- W2895846736 cites W2061228959 @default.
- W2895846736 cites W2069603959 @default.
- W2895846736 cites W2099091496 @default.
- W2895846736 cites W2105355027 @default.
- W2895846736 cites W2121221908 @default.
- W2895846736 cites W2131954084 @default.
- W2895846736 cites W2158216297 @default.
- W2895846736 cites W2160908110 @default.
- W2895846736 cites W2295167099 @default.
- W2895846736 cites W2322261300 @default.
- W2895846736 cites W2335524910 @default.
- W2895846736 cites W2515586274 @default.
- W2895846736 cites W2529529596 @default.
- W2895846736 cites W2606052777 @default.
- W2895846736 cites W2747342257 @default.
- W2895846736 cites W2766872946 @default.
- W2895846736 cites W3105469151 @default.
- W2895846736 doi "https://doi.org/10.1115/1.4041753" @default.
- W2895846736 hasPublicationYear "2019" @default.
- W2895846736 type Work @default.
- W2895846736 sameAs 2895846736 @default.
- W2895846736 citedByCount "28" @default.
- W2895846736 countsByYear W28958467362019 @default.
- W2895846736 countsByYear W28958467362020 @default.
- W2895846736 countsByYear W28958467362021 @default.
- W2895846736 countsByYear W28958467362022 @default.
- W2895846736 countsByYear W28958467362023 @default.
- W2895846736 crossrefType "journal-article" @default.
- W2895846736 hasAuthorship W2895846736A5011570868 @default.
- W2895846736 hasAuthorship W2895846736A5016150153 @default.
- W2895846736 hasAuthorship W2895846736A5018874846 @default.
- W2895846736 hasAuthorship W2895846736A5021829090 @default.
- W2895846736 hasAuthorship W2895846736A5052453820 @default.
- W2895846736 hasAuthorship W2895846736A5064734404 @default.
- W2895846736 hasBestOaLocation W28958467362 @default.
- W2895846736 hasConcept C121332964 @default.
- W2895846736 hasConcept C121864883 @default.
- W2895846736 hasConcept C147196274 @default.
- W2895846736 hasConcept C152846280 @default.
- W2895846736 hasConcept C15476950 @default.
- W2895846736 hasConcept C158622935 @default.
- W2895846736 hasConcept C182748727 @default.
- W2895846736 hasConcept C189223162 @default.
- W2895846736 hasConcept C196558001 @default.
- W2895846736 hasConcept C32526432 @default.
- W2895846736 hasConcept C33923547 @default.
- W2895846736 hasConcept C41008148 @default.
- W2895846736 hasConcept C48939323 @default.
- W2895846736 hasConcept C57879066 @default.
- W2895846736 hasConcept C62520636 @default.
- W2895846736 hasConceptScore W2895846736C121332964 @default.
- W2895846736 hasConceptScore W2895846736C121864883 @default.
- W2895846736 hasConceptScore W2895846736C147196274 @default.
- W2895846736 hasConceptScore W2895846736C152846280 @default.
- W2895846736 hasConceptScore W2895846736C15476950 @default.
- W2895846736 hasConceptScore W2895846736C158622935 @default.
- W2895846736 hasConceptScore W2895846736C182748727 @default.
- W2895846736 hasConceptScore W2895846736C189223162 @default.
- W2895846736 hasConceptScore W2895846736C196558001 @default.
- W2895846736 hasConceptScore W2895846736C32526432 @default.
- W2895846736 hasConceptScore W2895846736C33923547 @default.
- W2895846736 hasConceptScore W2895846736C41008148 @default.
- W2895846736 hasConceptScore W2895846736C48939323 @default.
- W2895846736 hasConceptScore W2895846736C57879066 @default.
- W2895846736 hasConceptScore W2895846736C62520636 @default.
- W2895846736 hasFunder F4320307759 @default.
- W2895846736 hasIssue "4" @default.
- W2895846736 hasLocation W28958467361 @default.
- W2895846736 hasLocation W28958467362 @default.
- W2895846736 hasOpenAccess W2895846736 @default.
- W2895846736 hasPrimaryLocation W28958467361 @default.
- W2895846736 hasRelatedWork W2008404267 @default.
- W2895846736 hasRelatedWork W2022133203 @default.
- W2895846736 hasRelatedWork W2883229276 @default.
- W2895846736 hasRelatedWork W2883740953 @default.
- W2895846736 hasRelatedWork W2884858086 @default.
- W2895846736 hasRelatedWork W2969508429 @default.
- W2895846736 hasRelatedWork W3012413782 @default.