Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895863973> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2895863973 abstract "An effective way to obtain large areas of crop area information is the space sampling method constructed by combining remote sensing data with traditional sampling methods. However, the traditional sampling method requires that the sampling units should satisfy the principle of mutual independence, and does not take into account that regional crops are spatially attributed to spatial autocorrelation due to natural conditions, socioeconomic factors, and other factors. In the past, it has not been reported whether the spatial autocorrelation has influence on the sampling efficiency of agricultural crops and how it affects the extent of impact, thus limiting the further improvement of the spatial sampling efficiency of crop acreage. In response to this problem, this study selected Fengtai County of Anhui Province as a research area. Through the combination of remote sensing data, spatial analysis and traditional sampling methods, three spatial sampling schemes (simple, systematic, and stratified sampling) were designed, 10 sampling unit scale levels, and the spatial autocorrelation of winter wheat area in different sampling units is quantitatively evaluated using the global spatial autocorrelation index (Moran's I); based on different sampling unit scales, three kinds of spatial sampling schemes are used to conduct sample selection, overall extrapolation and error estimation; the overall relative error (r) of the sampling extrapolation, the coefficient of variation (CV) of the total value estimate and the sample size (n) were selected as the evaluation index of the sampling efficiency to quantitatively evaluate the efficiency of the three spatial sampling schemes. The research results show that the winter wheat planting area spatial autocorrelation gradually decreases with the increase of sampling unit size in the sampling unit, but it still shows a strong spatial autocorrelation, The variation range of Z-Score is indicating that the winter wheat in the study area shows significant aggregation characteristics at different sampling unit sizes in the study area. Using 3 sampling methods to extrapolate the total population of cells at different sampling unit sizes, compared with the same sampling, the relative sampling error in the winter wheat area estimation first increases and then decreases with the increase of sampling unit size (decreased spatial autocorrelation), 1) For each method, the sampling error average under the four sampling fractions is conducted, and the average sampling error reaches the lowest point at 2000m×2000m, the variation coefficient increases with the size of the sampling unit. When the sampling unit size is controlled within 2000 m×2000 m, the average variation coefficient basically controlled within 15%. 2) Relative sampling error of the crop area estimation, variation coefficient, and average relative sampling error and average variation coefficient are all presented as stratified sampling was the smallest, followed by systematic sampling, and simple random sampling was the largest, where the mean variation coefficient of average sampling relative to stratified sampling has the smallest change in average variation coefficient. 3) When the sampling method is determined, the relative sampling error of the estimated crop area decreases as the sampling ratio increases. When the fraction reaches 5%, the sampling error amplitude is basically stable within 7%, the variation coefficient is stable within 5%, and within the 2000 m×2000 m sampling unit scale, continuing to increase sampling ratio has little effect on sampling error and variation coefficient. 4) Through the above three kinds of evaluation indicators, a quantitative sampling extrapolation efficiency evaluation model, spatial autocorrelation and sampling schemes are obtained. This study can provide a reference for rationally designing spatial sampling efficiency of crops in the presence of spatial autocorrelation." @default.
- W2895863973 created "2018-10-26" @default.
- W2895863973 creator A5021781633 @default.
- W2895863973 creator A5036733696 @default.
- W2895863973 creator A5045054415 @default.
- W2895863973 creator A5052304130 @default.
- W2895863973 date "2018-08-01" @default.
- W2895863973 modified "2023-10-16" @default.
- W2895863973 title "Spatial Autocorrelation of Winter Wheat in Sampling Units and its Effect on Sampling Efficiency" @default.
- W2895863973 cites W1973749534 @default.
- W2895863973 cites W1985377668 @default.
- W2895863973 cites W2004611847 @default.
- W2895863973 cites W2034125835 @default.
- W2895863973 cites W2046339343 @default.
- W2895863973 cites W2104088267 @default.
- W2895863973 cites W2337947219 @default.
- W2895863973 cites W2355287057 @default.
- W2895863973 cites W2362230513 @default.
- W2895863973 cites W2362847102 @default.
- W2895863973 cites W2373951425 @default.
- W2895863973 cites W2374752370 @default.
- W2895863973 cites W2388526997 @default.
- W2895863973 cites W2422477535 @default.
- W2895863973 cites W3137012864 @default.
- W2895863973 doi "https://doi.org/10.1109/agro-geoinformatics.2018.8476055" @default.
- W2895863973 hasPublicationYear "2018" @default.
- W2895863973 type Work @default.
- W2895863973 sameAs 2895863973 @default.
- W2895863973 citedByCount "0" @default.
- W2895863973 crossrefType "proceedings-article" @default.
- W2895863973 hasAuthorship W2895863973A5021781633 @default.
- W2895863973 hasAuthorship W2895863973A5036733696 @default.
- W2895863973 hasAuthorship W2895863973A5045054415 @default.
- W2895863973 hasAuthorship W2895863973A5052304130 @default.
- W2895863973 hasConcept C105795698 @default.
- W2895863973 hasConcept C106131492 @default.
- W2895863973 hasConcept C132459708 @default.
- W2895863973 hasConcept C140779682 @default.
- W2895863973 hasConcept C144024400 @default.
- W2895863973 hasConcept C149923435 @default.
- W2895863973 hasConcept C159620131 @default.
- W2895863973 hasConcept C185592680 @default.
- W2895863973 hasConcept C192489979 @default.
- W2895863973 hasConcept C198531522 @default.
- W2895863973 hasConcept C20353970 @default.
- W2895863973 hasConcept C205649164 @default.
- W2895863973 hasConcept C2908647359 @default.
- W2895863973 hasConcept C31972630 @default.
- W2895863973 hasConcept C33923547 @default.
- W2895863973 hasConcept C41008148 @default.
- W2895863973 hasConcept C43617362 @default.
- W2895863973 hasConcept C49898467 @default.
- W2895863973 hasConcept C5297727 @default.
- W2895863973 hasConcept C62649853 @default.
- W2895863973 hasConcept C75373757 @default.
- W2895863973 hasConcept C94747663 @default.
- W2895863973 hasConceptScore W2895863973C105795698 @default.
- W2895863973 hasConceptScore W2895863973C106131492 @default.
- W2895863973 hasConceptScore W2895863973C132459708 @default.
- W2895863973 hasConceptScore W2895863973C140779682 @default.
- W2895863973 hasConceptScore W2895863973C144024400 @default.
- W2895863973 hasConceptScore W2895863973C149923435 @default.
- W2895863973 hasConceptScore W2895863973C159620131 @default.
- W2895863973 hasConceptScore W2895863973C185592680 @default.
- W2895863973 hasConceptScore W2895863973C192489979 @default.
- W2895863973 hasConceptScore W2895863973C198531522 @default.
- W2895863973 hasConceptScore W2895863973C20353970 @default.
- W2895863973 hasConceptScore W2895863973C205649164 @default.
- W2895863973 hasConceptScore W2895863973C2908647359 @default.
- W2895863973 hasConceptScore W2895863973C31972630 @default.
- W2895863973 hasConceptScore W2895863973C33923547 @default.
- W2895863973 hasConceptScore W2895863973C41008148 @default.
- W2895863973 hasConceptScore W2895863973C43617362 @default.
- W2895863973 hasConceptScore W2895863973C49898467 @default.
- W2895863973 hasConceptScore W2895863973C5297727 @default.
- W2895863973 hasConceptScore W2895863973C62649853 @default.
- W2895863973 hasConceptScore W2895863973C75373757 @default.
- W2895863973 hasConceptScore W2895863973C94747663 @default.
- W2895863973 hasLocation W28958639731 @default.
- W2895863973 hasOpenAccess W2895863973 @default.
- W2895863973 hasPrimaryLocation W28958639731 @default.
- W2895863973 hasRelatedWork W1527054660 @default.
- W2895863973 hasRelatedWork W1943059842 @default.
- W2895863973 hasRelatedWork W2005683346 @default.
- W2895863973 hasRelatedWork W2115650663 @default.
- W2895863973 hasRelatedWork W2164051890 @default.
- W2895863973 hasRelatedWork W2255225906 @default.
- W2895863973 hasRelatedWork W2330186192 @default.
- W2895863973 hasRelatedWork W2595070305 @default.
- W2895863973 hasRelatedWork W3126132007 @default.
- W2895863973 hasRelatedWork W567739382 @default.
- W2895863973 isParatext "false" @default.
- W2895863973 isRetracted "false" @default.
- W2895863973 magId "2895863973" @default.
- W2895863973 workType "article" @default.