Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895868051> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2895868051 abstract "Failure event prediction is becoming increasingly important in wide applications, such as the planning of proactive maintenance, the active investment management, and disease surveillance. To address the issue, the hazard function in survival analysis has been employed to describe the pattern of failures. Different from traditional survival analysis, this paper discovers how to apply recurrent neural network (RNN) to the long-term hazard function prediction. The proposed Long-Term RNN (LT-RNN) is able to leverage the precedent information shared by other entities, leading to more reliable long-term predictions. Specifically, our method allows a black-box treatment for modelling the hazard function which is often a pre-defined parametric form in typical survival analysis. The key idea of our approach is to model the hazard function as a nonparameteric function of the history. The same precedent information from other entities is embedded to a stitched vector for LT-RNN to automatically learn a representation of the long-term hazard function. We apply our model to the proactive maintenance problem using a large dataset from a water utility in Australia." @default.
- W2895868051 created "2018-10-26" @default.
- W2895868051 creator A5034899138 @default.
- W2895868051 creator A5037660639 @default.
- W2895868051 creator A5051364953 @default.
- W2895868051 creator A5056429995 @default.
- W2895868051 date "2018-10-17" @default.
- W2895868051 modified "2023-10-07" @default.
- W2895868051 title "Long-Term RNN" @default.
- W2895868051 cites W1978764810 @default.
- W2895868051 cites W1996596366 @default.
- W2895868051 cites W2064675550 @default.
- W2895868051 cites W2358113125 @default.
- W2895868051 cites W2509830164 @default.
- W2895868051 cites W2533794600 @default.
- W2895868051 cites W2566465915 @default.
- W2895868051 cites W2605191235 @default.
- W2895868051 doi "https://doi.org/10.1145/3269206.3269321" @default.
- W2895868051 hasPublicationYear "2018" @default.
- W2895868051 type Work @default.
- W2895868051 sameAs 2895868051 @default.
- W2895868051 citedByCount "5" @default.
- W2895868051 countsByYear W28958680512020 @default.
- W2895868051 countsByYear W28958680512021 @default.
- W2895868051 countsByYear W28958680512023 @default.
- W2895868051 crossrefType "proceedings-article" @default.
- W2895868051 hasAuthorship W2895868051A5034899138 @default.
- W2895868051 hasAuthorship W2895868051A5037660639 @default.
- W2895868051 hasAuthorship W2895868051A5051364953 @default.
- W2895868051 hasAuthorship W2895868051A5056429995 @default.
- W2895868051 hasConcept C121332964 @default.
- W2895868051 hasConcept C147168706 @default.
- W2895868051 hasConcept C154945302 @default.
- W2895868051 hasConcept C41008148 @default.
- W2895868051 hasConcept C50644808 @default.
- W2895868051 hasConcept C61797465 @default.
- W2895868051 hasConcept C62520636 @default.
- W2895868051 hasConceptScore W2895868051C121332964 @default.
- W2895868051 hasConceptScore W2895868051C147168706 @default.
- W2895868051 hasConceptScore W2895868051C154945302 @default.
- W2895868051 hasConceptScore W2895868051C41008148 @default.
- W2895868051 hasConceptScore W2895868051C50644808 @default.
- W2895868051 hasConceptScore W2895868051C61797465 @default.
- W2895868051 hasConceptScore W2895868051C62520636 @default.
- W2895868051 hasLocation W28958680511 @default.
- W2895868051 hasOpenAccess W2895868051 @default.
- W2895868051 hasPrimaryLocation W28958680511 @default.
- W2895868051 hasRelatedWork W2372022541 @default.
- W2895868051 hasRelatedWork W2394835536 @default.
- W2895868051 hasRelatedWork W2726499916 @default.
- W2895868051 hasRelatedWork W2737922186 @default.
- W2895868051 hasRelatedWork W2782968911 @default.
- W2895868051 hasRelatedWork W2800726910 @default.
- W2895868051 hasRelatedWork W2802557404 @default.
- W2895868051 hasRelatedWork W2896411932 @default.
- W2895868051 hasRelatedWork W2907591982 @default.
- W2895868051 hasRelatedWork W4226184137 @default.
- W2895868051 isParatext "false" @default.
- W2895868051 isRetracted "false" @default.
- W2895868051 magId "2895868051" @default.
- W2895868051 workType "article" @default.