Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895868491> ?p ?o ?g. }
- W2895868491 endingPage "73" @default.
- W2895868491 startingPage "64" @default.
- W2895868491 abstract "The hourly cooling load forecasting of a commercial building is very hard to be guaranteed with high accuracy. Due to the high cost of purchase, installation and maintenance for data acquisition devices in some cases, the forecasting method for univariate time series with nonlinear, random, large fluctuation is investigated in this paper and two hybrid machine learning modelling methods – Chaos–support vector regression (Chaos-SVR) and wavelet decomposition (WD) – SVR are presented. The optimization methods of the lag time and embedding dimension during reconstruction of the phase space are described in detail for Chaos–SVR while the selection processes for the wavelet-based function are also presented for wavelet decomposition –SVR. The prediction accuracy of these two hybrid forecasting methods are compared with backward propagation and SVR according to various evaluation metrics such as the expected error percentage(EEP), mean bias error(MBR), coefficient of variation of root mean square deviation(CV-RMSE), mean absolute percentage error (MAPE) and R2 determination coefficient. The forecasting results show that the Chaos–SVR modelling method outperforms the WD-SVR while EEP of Chaos-SVR is 7.4% better than WD-SVR– because of the chaotic characteristics of the cooling load for commercial buildings, and both of the hybrid algorithms outperform the single prediction algorithms, BP and SVR whose EEPs are at least 60% better than that of the other single ones. Although hybrid machine learning algorithms involve more complex modelling procedures than single prediction algorithms, their prediction times are still less than the single ones. The hybrid forecasting methods proposed in this work could also be used in other forecasting fields." @default.
- W2895868491 created "2018-10-26" @default.
- W2895868491 creator A5001213744 @default.
- W2895868491 creator A5017713115 @default.
- W2895868491 creator A5019285590 @default.
- W2895868491 creator A5034673302 @default.
- W2895868491 creator A5057214714 @default.
- W2895868491 creator A5090266588 @default.
- W2895868491 date "2019-01-01" @default.
- W2895868491 modified "2023-10-06" @default.
- W2895868491 title "Forecasting performance comparison of two hybrid machine learning models for cooling load of a large-scale commercial building" @default.
- W2895868491 cites W1150399948 @default.
- W2895868491 cites W1169076056 @default.
- W2895868491 cites W1547333707 @default.
- W2895868491 cites W1971278352 @default.
- W2895868491 cites W1976213122 @default.
- W2895868491 cites W1984500452 @default.
- W2895868491 cites W1985408304 @default.
- W2895868491 cites W2010461070 @default.
- W2895868491 cites W2033490192 @default.
- W2895868491 cites W2042100018 @default.
- W2895868491 cites W2042487553 @default.
- W2895868491 cites W2047143310 @default.
- W2895868491 cites W2081070791 @default.
- W2895868491 cites W2124428761 @default.
- W2895868491 cites W2144335970 @default.
- W2895868491 cites W2162086290 @default.
- W2895868491 cites W2171375535 @default.
- W2895868491 cites W2201221078 @default.
- W2895868491 cites W2284726324 @default.
- W2895868491 cites W2525614189 @default.
- W2895868491 cites W2538107750 @default.
- W2895868491 cites W2589687774 @default.
- W2895868491 cites W2692137003 @default.
- W2895868491 cites W2753280068 @default.
- W2895868491 cites W2761875693 @default.
- W2895868491 cites W2766434242 @default.
- W2895868491 cites W2773309836 @default.
- W2895868491 cites W2789243543 @default.
- W2895868491 cites W2791561409 @default.
- W2895868491 cites W2792344217 @default.
- W2895868491 cites W2795405025 @default.
- W2895868491 cites W2836487175 @default.
- W2895868491 cites W2854243379 @default.
- W2895868491 cites W2883144926 @default.
- W2895868491 doi "https://doi.org/10.1016/j.jobe.2018.10.006" @default.
- W2895868491 hasPublicationYear "2019" @default.
- W2895868491 type Work @default.
- W2895868491 sameAs 2895868491 @default.
- W2895868491 citedByCount "42" @default.
- W2895868491 countsByYear W28958684912019 @default.
- W2895868491 countsByYear W28958684912020 @default.
- W2895868491 countsByYear W28958684912021 @default.
- W2895868491 countsByYear W28958684912022 @default.
- W2895868491 countsByYear W28958684912023 @default.
- W2895868491 crossrefType "journal-article" @default.
- W2895868491 hasAuthorship W2895868491A5001213744 @default.
- W2895868491 hasAuthorship W2895868491A5017713115 @default.
- W2895868491 hasAuthorship W2895868491A5019285590 @default.
- W2895868491 hasAuthorship W2895868491A5034673302 @default.
- W2895868491 hasAuthorship W2895868491A5057214714 @default.
- W2895868491 hasAuthorship W2895868491A5090266588 @default.
- W2895868491 hasConcept C105795698 @default.
- W2895868491 hasConcept C11413529 @default.
- W2895868491 hasConcept C119857082 @default.
- W2895868491 hasConcept C12267149 @default.
- W2895868491 hasConcept C139945424 @default.
- W2895868491 hasConcept C150217764 @default.
- W2895868491 hasConcept C154945302 @default.
- W2895868491 hasConcept C161584116 @default.
- W2895868491 hasConcept C199163554 @default.
- W2895868491 hasConcept C2777052490 @default.
- W2895868491 hasConcept C33923547 @default.
- W2895868491 hasConcept C41008148 @default.
- W2895868491 hasConcept C47432892 @default.
- W2895868491 hasConceptScore W2895868491C105795698 @default.
- W2895868491 hasConceptScore W2895868491C11413529 @default.
- W2895868491 hasConceptScore W2895868491C119857082 @default.
- W2895868491 hasConceptScore W2895868491C12267149 @default.
- W2895868491 hasConceptScore W2895868491C139945424 @default.
- W2895868491 hasConceptScore W2895868491C150217764 @default.
- W2895868491 hasConceptScore W2895868491C154945302 @default.
- W2895868491 hasConceptScore W2895868491C161584116 @default.
- W2895868491 hasConceptScore W2895868491C199163554 @default.
- W2895868491 hasConceptScore W2895868491C2777052490 @default.
- W2895868491 hasConceptScore W2895868491C33923547 @default.
- W2895868491 hasConceptScore W2895868491C41008148 @default.
- W2895868491 hasConceptScore W2895868491C47432892 @default.
- W2895868491 hasFunder F4320321921 @default.
- W2895868491 hasLocation W28958684911 @default.
- W2895868491 hasOpenAccess W2895868491 @default.
- W2895868491 hasPrimaryLocation W28958684911 @default.
- W2895868491 hasRelatedWork W1996541855 @default.
- W2895868491 hasRelatedWork W2008453766 @default.
- W2895868491 hasRelatedWork W2023904223 @default.
- W2895868491 hasRelatedWork W2116574033 @default.
- W2895868491 hasRelatedWork W2145613766 @default.
- W2895868491 hasRelatedWork W3195168932 @default.