Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895869394> ?p ?o ?g. }
- W2895869394 abstract "The fractional Laplacian ${(ensuremath{-}mathrm{ensuremath{Delta}})}^{ensuremath{alpha}/2}$, $ensuremath{alpha}ensuremath{in}(0,2)$, has many equivalent (albeit formally different) realizations as a nonlocal generator of a family of $ensuremath{alpha}$-stable stochastic processes in ${R}^{n}$. On the other hand, if the process is to be restricted to a bounded domain, there are many inequivalent proposals for what a boundary-data-respecting fractional Laplacian should actually be. This ambiguity not only holds true for each specific choice of the process behavior at the boundary (e.g., absorbtion, reflection, conditioning, or boundary taboos), but extends as well to its particular technical implementation (Dirichlet, Neumann, etc., problems). The inferred jump-type processes are inequivalent as well, differing in their spectral and statistical characteristics, which may strongly influence the ability of the formalism (if uncritically adopted) to provide an unambiguous description of real geometrically confined physical systems with disorder. Specifically that refers to their relaxation properties and the near-equilibrium asymptotic behavior. In the present paper we focus on L'evy flight-induced jump-type processes which are constrained to stay forever inside a finite domain. This refers to a concept of taboo processes (imported from Brownian to L'evy-stable contexts), to so-called censored processes, and to reflected L'evy flights whose status still remains to be unequivocally settled. As a by-product of our fractional spectral analysis, with reference to Neumann boundary conditions, we discuss disordered semiconducting heterojunctions as the bounded domain problem." @default.
- W2895869394 created "2018-10-26" @default.
- W2895869394 creator A5052767040 @default.
- W2895869394 creator A5065320821 @default.
- W2895869394 date "2019-04-18" @default.
- W2895869394 modified "2023-09-26" @default.
- W2895869394 title "Fractional Laplacians in bounded domains: Killed, reflected, censored, and taboo Lévy flights" @default.
- W2895869394 cites W1531503646 @default.
- W2895869394 cites W1575877217 @default.
- W2895869394 cites W1581513768 @default.
- W2895869394 cites W1629273100 @default.
- W2895869394 cites W1643140129 @default.
- W2895869394 cites W1820320967 @default.
- W2895869394 cites W1968094130 @default.
- W2895869394 cites W1969883291 @default.
- W2895869394 cites W1971775998 @default.
- W2895869394 cites W1973352373 @default.
- W2895869394 cites W1973485566 @default.
- W2895869394 cites W1977079737 @default.
- W2895869394 cites W1978613960 @default.
- W2895869394 cites W1981928942 @default.
- W2895869394 cites W1993151025 @default.
- W2895869394 cites W1994997909 @default.
- W2895869394 cites W2000593856 @default.
- W2895869394 cites W2003877640 @default.
- W2895869394 cites W2011095781 @default.
- W2895869394 cites W2021239100 @default.
- W2895869394 cites W2027205768 @default.
- W2895869394 cites W2027602715 @default.
- W2895869394 cites W2027803689 @default.
- W2895869394 cites W2036459535 @default.
- W2895869394 cites W2042473487 @default.
- W2895869394 cites W2048891896 @default.
- W2895869394 cites W2057936436 @default.
- W2895869394 cites W2062362105 @default.
- W2895869394 cites W2062639424 @default.
- W2895869394 cites W2077366558 @default.
- W2895869394 cites W2078671468 @default.
- W2895869394 cites W2081298453 @default.
- W2895869394 cites W2084801628 @default.
- W2895869394 cites W2089388224 @default.
- W2895869394 cites W2100224106 @default.
- W2895869394 cites W2102109230 @default.
- W2895869394 cites W2104339235 @default.
- W2895869394 cites W2105685140 @default.
- W2895869394 cites W2111574818 @default.
- W2895869394 cites W2122161990 @default.
- W2895869394 cites W2143606048 @default.
- W2895869394 cites W2200607474 @default.
- W2895869394 cites W2237573259 @default.
- W2895869394 cites W2339693255 @default.
- W2895869394 cites W2341852004 @default.
- W2895869394 cites W2400030893 @default.
- W2895869394 cites W2506679265 @default.
- W2895869394 cites W2619395119 @default.
- W2895869394 cites W2768690360 @default.
- W2895869394 cites W2769258003 @default.
- W2895869394 cites W2770040584 @default.
- W2895869394 cites W2788953918 @default.
- W2895869394 cites W2792976974 @default.
- W2895869394 cites W2794249501 @default.
- W2895869394 cites W2799232327 @default.
- W2895869394 cites W2801192398 @default.
- W2895869394 cites W2804042465 @default.
- W2895869394 cites W2810257920 @default.
- W2895869394 cites W2906328270 @default.
- W2895869394 cites W2911356655 @default.
- W2895869394 cites W2911388933 @default.
- W2895869394 cites W2952503481 @default.
- W2895869394 cites W2962743801 @default.
- W2895869394 cites W2962989646 @default.
- W2895869394 cites W2963110214 @default.
- W2895869394 cites W2963196588 @default.
- W2895869394 cites W2963420092 @default.
- W2895869394 cites W2963532576 @default.
- W2895869394 cites W2963609274 @default.
- W2895869394 cites W2963645054 @default.
- W2895869394 cites W2963745149 @default.
- W2895869394 cites W2963765153 @default.
- W2895869394 cites W3098058822 @default.
- W2895869394 cites W3100553891 @default.
- W2895869394 cites W3101692497 @default.
- W2895869394 cites W3102937562 @default.
- W2895869394 cites W3104662511 @default.
- W2895869394 cites W3105310562 @default.
- W2895869394 cites W3124607094 @default.
- W2895869394 cites W3141588430 @default.
- W2895869394 cites W3200506295 @default.
- W2895869394 cites W4230441600 @default.
- W2895869394 cites W4234173687 @default.
- W2895869394 cites W4251894810 @default.
- W2895869394 cites W986594838 @default.
- W2895869394 cites W2156789726 @default.
- W2895869394 cites W3105236280 @default.
- W2895869394 doi "https://doi.org/10.1103/physreve.99.042126" @default.
- W2895869394 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31108727" @default.
- W2895869394 hasPublicationYear "2019" @default.
- W2895869394 type Work @default.
- W2895869394 sameAs 2895869394 @default.
- W2895869394 citedByCount "17" @default.