Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895871073> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2895871073 abstract "According to World Health organization, epilepsy is one of the most common chronic neurological disorder, affecting approximately 50 million people. This infirmity presents four kinds of events: pre-ictal, ictal, post-ictal, and interictal. Epilepsy can be diagnosed through electroencephalogram (EEG). The interictal activity, for example, on an EEG, is widely accepted as an epilepsy symptom. However, the differentiation between normal and interictal EEG segments is difficult because they can have similar patterns. Also, EEG from patients with epilepsy can contain normal events. In this work, we built classifiers to differentiate between normal and interictal EEG. Our proposed process was applied in a set of 200 EEG segments. For this, power spectrum (PS) was computed for each signal, and 18 measures were extracted from PS considering five frequency bands: delta, theta, alpha, beta, and entire frequency range (between lower delta and higher beta frequency range). Thus, from each PS, 90 features were extracted. The following machine learning methods were applied to build the classifiers: random forest, INN, naive Bayes (NB), MLP, and SVM. In the evaluation by cross-validation approach, a statistically significant difference was not found among classifiers, whose error values resulted in the p-value of 0.1089 by Friedman test. On the other hand, by confusion matrices and their parameters, it was found that the NB classifier reached the best performance to detect normal EEG segments. For detection of interictal activity, the MLP and SVM classifiers achieved the best results. All classifiers built in this work reached promising results for differentiation between normal and interictal EEG patterns." @default.
- W2895871073 created "2018-10-26" @default.
- W2895871073 creator A5002550458 @default.
- W2895871073 creator A5047073710 @default.
- W2895871073 date "2018-07-01" @default.
- W2895871073 modified "2023-10-15" @default.
- W2895871073 title "Differentiation between Normal and Interictal EEG Using Multitaper Spectral Classifiers" @default.
- W2895871073 cites W1868744023 @default.
- W2895871073 cites W1891631519 @default.
- W2895871073 cites W1966389522 @default.
- W2895871073 cites W1978437325 @default.
- W2895871073 cites W2007221293 @default.
- W2895871073 cites W2007552433 @default.
- W2895871073 cites W2010483898 @default.
- W2895871073 cites W2024482587 @default.
- W2895871073 cites W2033894697 @default.
- W2895871073 cites W2041875327 @default.
- W2895871073 cites W2053744708 @default.
- W2895871073 cites W2077204677 @default.
- W2895871073 cites W2096588881 @default.
- W2895871073 cites W2097569937 @default.
- W2895871073 cites W2098902891 @default.
- W2895871073 cites W2111072639 @default.
- W2895871073 cites W2116386142 @default.
- W2895871073 cites W2121394390 @default.
- W2895871073 cites W2128420091 @default.
- W2895871073 cites W2131387622 @default.
- W2895871073 cites W2155722796 @default.
- W2895871073 cites W2156192068 @default.
- W2895871073 cites W2158698691 @default.
- W2895871073 cites W2160867523 @default.
- W2895871073 cites W2167208435 @default.
- W2895871073 cites W2168745915 @default.
- W2895871073 cites W2170084169 @default.
- W2895871073 cites W2171623992 @default.
- W2895871073 cites W2221831393 @default.
- W2895871073 cites W2341760625 @default.
- W2895871073 cites W2486732348 @default.
- W2895871073 cites W2508640362 @default.
- W2895871073 cites W2560662810 @default.
- W2895871073 cites W2766926298 @default.
- W2895871073 cites W2911964244 @default.
- W2895871073 cites W2978725006 @default.
- W2895871073 cites W4212883601 @default.
- W2895871073 cites W579568666 @default.
- W2895871073 doi "https://doi.org/10.1109/ijcnn.2018.8489503" @default.
- W2895871073 hasPublicationYear "2018" @default.
- W2895871073 type Work @default.
- W2895871073 sameAs 2895871073 @default.
- W2895871073 citedByCount "3" @default.
- W2895871073 countsByYear W28958710732019 @default.
- W2895871073 countsByYear W28958710732021 @default.
- W2895871073 countsByYear W28958710732023 @default.
- W2895871073 crossrefType "proceedings-article" @default.
- W2895871073 hasAuthorship W2895871073A5002550458 @default.
- W2895871073 hasAuthorship W2895871073A5047073710 @default.
- W2895871073 hasConcept C153180895 @default.
- W2895871073 hasConcept C154945302 @default.
- W2895871073 hasConcept C15744967 @default.
- W2895871073 hasConcept C169760540 @default.
- W2895871073 hasConcept C17755696 @default.
- W2895871073 hasConcept C2777067715 @default.
- W2895871073 hasConcept C28490314 @default.
- W2895871073 hasConcept C41008148 @default.
- W2895871073 hasConcept C522805319 @default.
- W2895871073 hasConceptScore W2895871073C153180895 @default.
- W2895871073 hasConceptScore W2895871073C154945302 @default.
- W2895871073 hasConceptScore W2895871073C15744967 @default.
- W2895871073 hasConceptScore W2895871073C169760540 @default.
- W2895871073 hasConceptScore W2895871073C17755696 @default.
- W2895871073 hasConceptScore W2895871073C2777067715 @default.
- W2895871073 hasConceptScore W2895871073C28490314 @default.
- W2895871073 hasConceptScore W2895871073C41008148 @default.
- W2895871073 hasConceptScore W2895871073C522805319 @default.
- W2895871073 hasLocation W28958710731 @default.
- W2895871073 hasOpenAccess W2895871073 @default.
- W2895871073 hasPrimaryLocation W28958710731 @default.
- W2895871073 hasRelatedWork W2092097275 @default.
- W2895871073 hasRelatedWork W2249570950 @default.
- W2895871073 hasRelatedWork W2469729633 @default.
- W2895871073 hasRelatedWork W2473520727 @default.
- W2895871073 hasRelatedWork W2771531125 @default.
- W2895871073 hasRelatedWork W2793977866 @default.
- W2895871073 hasRelatedWork W2902992028 @default.
- W2895871073 hasRelatedWork W3016974233 @default.
- W2895871073 hasRelatedWork W4200354429 @default.
- W2895871073 hasRelatedWork W4229077016 @default.
- W2895871073 isParatext "false" @default.
- W2895871073 isRetracted "false" @default.
- W2895871073 magId "2895871073" @default.
- W2895871073 workType "article" @default.