Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895878851> ?p ?o ?g. }
- W2895878851 abstract "Two key challenges in modern statistical applications are the large amount of information recorded per individual, and that such data are often not collected all at once but in batches. These batch effects can be complex, causing distortions in both mean and variance. We propose a novel sparse latent factor regression model to integrate such heterogeneous data. The model provides a tool for data exploration via dimensionality reduction while correcting for a range of batch effects. We study the use of several sparse priors (local and non-local) to learn the dimension of the latent factors. Our model is fitted in a deterministic fashion by means of an EM algorithm for which we derive closed-form updates, contributing a novel scalable algorithm for non-local priors of interest beyond the immediate scope of this paper. We present several examples, with a focus on bioinformatics applications. Our results show an increase in the accuracy of the dimensionality reduction, with non-local priors substantially improving the reconstruction of factor cardinality, as well as the need to account for batch effects to obtain reliable results. Our model provides a novel approach to latent factor regression that balances sparsity with sensitivity and is highly computationally efficient." @default.
- W2895878851 created "2018-10-26" @default.
- W2895878851 creator A5063900043 @default.
- W2895878851 creator A5074793869 @default.
- W2895878851 creator A5086506904 @default.
- W2895878851 date "2018-10-23" @default.
- W2895878851 modified "2023-09-27" @default.
- W2895878851 title "Heterogeneous large datasets integration using Bayesian factor regression" @default.
- W2895878851 cites W1480376833 @default.
- W2895878851 cites W1537539030 @default.
- W2895878851 cites W1580788756 @default.
- W2895878851 cites W1605539168 @default.
- W2895878851 cites W171292237 @default.
- W2895878851 cites W1772250503 @default.
- W2895878851 cites W1839576245 @default.
- W2895878851 cites W1971208478 @default.
- W2895878851 cites W1990885553 @default.
- W2895878851 cites W1996595747 @default.
- W2895878851 cites W1997320786 @default.
- W2895878851 cites W1999974018 @default.
- W2895878851 cites W2007069447 @default.
- W2895878851 cites W2029721016 @default.
- W2895878851 cites W2049633694 @default.
- W2895878851 cites W2052785055 @default.
- W2895878851 cites W2053675401 @default.
- W2895878851 cites W2055025635 @default.
- W2895878851 cites W2082582160 @default.
- W2895878851 cites W2084139018 @default.
- W2895878851 cites W2095264870 @default.
- W2895878851 cites W2096192437 @default.
- W2895878851 cites W2098290597 @default.
- W2895878851 cites W2099079147 @default.
- W2895878851 cites W2100668965 @default.
- W2895878851 cites W2104827998 @default.
- W2895878851 cites W2107665951 @default.
- W2895878851 cites W2112440119 @default.
- W2895878851 cites W2117920736 @default.
- W2895878851 cites W2124161652 @default.
- W2895878851 cites W2124201592 @default.
- W2895878851 cites W2128360321 @default.
- W2895878851 cites W2137499573 @default.
- W2895878851 cites W2139345901 @default.
- W2895878851 cites W2148541040 @default.
- W2895878851 cites W2150791259 @default.
- W2895878851 cites W2151454335 @default.
- W2895878851 cites W2155684712 @default.
- W2895878851 cites W2157801062 @default.
- W2895878851 cites W2160953558 @default.
- W2895878851 cites W2166219471 @default.
- W2895878851 cites W2168175751 @default.
- W2895878851 cites W2187483593 @default.
- W2895878851 cites W2245213139 @default.
- W2895878851 cites W2264481086 @default.
- W2895878851 cites W2280942156 @default.
- W2895878851 cites W2492689508 @default.
- W2895878851 cites W2514253892 @default.
- W2895878851 cites W2566065221 @default.
- W2895878851 cites W2603756957 @default.
- W2895878851 cites W2795304539 @default.
- W2895878851 cites W2797300439 @default.
- W2895878851 cites W2810324851 @default.
- W2895878851 cites W2903332550 @default.
- W2895878851 cites W2963340261 @default.
- W2895878851 cites W2966460335 @default.
- W2895878851 cites W2063862573 @default.
- W2895878851 hasPublicationYear "2018" @default.
- W2895878851 type Work @default.
- W2895878851 sameAs 2895878851 @default.
- W2895878851 citedByCount "0" @default.
- W2895878851 crossrefType "posted-content" @default.
- W2895878851 hasAuthorship W2895878851A5063900043 @default.
- W2895878851 hasAuthorship W2895878851A5074793869 @default.
- W2895878851 hasAuthorship W2895878851A5086506904 @default.
- W2895878851 hasConcept C105795698 @default.
- W2895878851 hasConcept C107673813 @default.
- W2895878851 hasConcept C111030470 @default.
- W2895878851 hasConcept C119857082 @default.
- W2895878851 hasConcept C121955636 @default.
- W2895878851 hasConcept C124101348 @default.
- W2895878851 hasConcept C144133560 @default.
- W2895878851 hasConcept C154945302 @default.
- W2895878851 hasConcept C159985019 @default.
- W2895878851 hasConcept C177769412 @default.
- W2895878851 hasConcept C192562407 @default.
- W2895878851 hasConcept C196083921 @default.
- W2895878851 hasConcept C202444582 @default.
- W2895878851 hasConcept C204323151 @default.
- W2895878851 hasConcept C26517878 @default.
- W2895878851 hasConcept C33676613 @default.
- W2895878851 hasConcept C33923547 @default.
- W2895878851 hasConcept C38652104 @default.
- W2895878851 hasConcept C41008148 @default.
- W2895878851 hasConcept C48044578 @default.
- W2895878851 hasConcept C51167844 @default.
- W2895878851 hasConcept C70518039 @default.
- W2895878851 hasConcept C77088390 @default.
- W2895878851 hasConcept C83546350 @default.
- W2895878851 hasConcept C87117476 @default.
- W2895878851 hasConceptScore W2895878851C105795698 @default.
- W2895878851 hasConceptScore W2895878851C107673813 @default.