Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895880481> ?p ?o ?g. }
- W2895880481 endingPage "2259" @default.
- W2895880481 startingPage "2235" @default.
- W2895880481 abstract "Metal-organic frameworks (MOFs) have stimulated huge research interest in the field of electrochemical energy storage and conversion. The high porosity and versatile functionalities of MOF-related materials have been considered favorable to promote the overall electrochemical performance; however, the practical application of MOF-related materials in rechargeable batteries is hindered by many issues, such as the low tap density and stability as well as high cost. Herein, we emphasize the opportunities and challenges of MOF-related materials for rechargeable batteries, providing an objective understanding of both the benefits and limitations offered by these materials. These discussions can be beneficial for other research works on MOF-related electrochemical applications, such as supercapacitors and electrochemical catalysis. Future research will open new possibilities in mechanism exploration by in situ characterizations and computational theoretical calculations. Metal-organic frameworks (MOFs) and their derivatives are two developing families of functional materials for energy storage and conversion. Their high porosity, versatile functionalities, diverse structures, and controllable chemical compositions offer immense possibilities in the search for adequate electrode materials for rechargeable batteries. Despite these advantageous features, MOFs and their derivatives as electrode materials face various challenging issues, which impede their practical applications. From this perspective, we present both the opportunities and challenges that MOFs/MOF composites and MOF-derived materials bring to rechargeable batteries, including lithium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, and sodium-ion batteries. By discussing the development of MOFs/MOF composites and MOF-derived materials in each battery system, some design principles that dominate the specific electrochemical behaviors are outlined, with the key requirements that a practical electrode should fulfill. At the end, a basic guidance and future directions for further development are provided. Metal-organic frameworks (MOFs) and their derivatives are two developing families of functional materials for energy storage and conversion. Their high porosity, versatile functionalities, diverse structures, and controllable chemical compositions offer immense possibilities in the search for adequate electrode materials for rechargeable batteries. Despite these advantageous features, MOFs and their derivatives as electrode materials face various challenging issues, which impede their practical applications. From this perspective, we present both the opportunities and challenges that MOFs/MOF composites and MOF-derived materials bring to rechargeable batteries, including lithium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, and sodium-ion batteries. By discussing the development of MOFs/MOF composites and MOF-derived materials in each battery system, some design principles that dominate the specific electrochemical behaviors are outlined, with the key requirements that a practical electrode should fulfill. At the end, a basic guidance and future directions for further development are provided. Nowadays, the global energy consumption and demand have increased dramatically due to the continuous economic and population growth. To mitigate the gradual depletion of fossil fuels and the concomitant climate issues, renewable energies (e.g., solar and wind energies) are explored to power our society in an environmentally friendly way. To store and modulate the intermittent output power, rechargeable batteries have triggered intensive explorations as reliable electrochemical energy storage devices.1Etacheri V. Marom R. Elazari R. Salitra G. Aurbach D. Challenges in the development of advanced Li-ion batteries: a review.Energy Environ. Sci. 2011; 4: 3243-3262Crossref Scopus (0) Google Scholar, 2Liu Y. Zhou G. Liu K. Cui Y. Design of complex nanomaterials for energy storage: past success and future opportunity.Acc. Chem. Res. 2017; 50: 2895-2905Crossref PubMed Scopus (11) Google Scholar, 3Ji X. Nazar L.F. Advances in Li-S batteries.J. Mater. Chem. 2010; 20: 9821-9826Crossref Scopus (1002) Google Scholar, 4Manthiram A. Fu Y. Chung S.-H. Zu C. Su Y.-S. Rechargeable lithium-sulfur batteries.Chem. Rev. 2014; 114: 11751-11787Crossref PubMed Scopus (1196) Google Scholar, 5Fang R. Zhao S. Sun Z. Wang D.-W. Cheng H.-M. Li F. More reliable lithium-sulfur batteries: status, solutions and prospects.Adv. Mater. 2017; 29: 1606823Crossref Scopus (85) Google Scholar, 6Palomares V. Serras P. Villaluenga I. Hueso K.B. Carretero-Gonzalez J. Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems.Energy Environ. Sci. 2012; 5: 5884-5901Crossref Scopus (1670) Google Scholar, 7Zou G. Hou H. Ge P. Huang Z. Zhao G. Yin D. Ji X. Metal-organic framework-derived materials for sodium energy storage.Small. 2018; 14: 1702648Crossref Scopus (12) Google Scholar Moreover, the ever-growing markets of portable electronics and electric vehicles also call for high-performance rechargeable batteries with high power/energy density and long-term cycling stability.1Etacheri V. Marom R. Elazari R. Salitra G. Aurbach D. Challenges in the development of advanced Li-ion batteries: a review.Energy Environ. Sci. 2011; 4: 3243-3262Crossref Scopus (0) Google Scholar, 2Liu Y. Zhou G. Liu K. Cui Y. Design of complex nanomaterials for energy storage: past success and future opportunity.Acc. Chem. Res. 2017; 50: 2895-2905Crossref PubMed Scopus (11) Google Scholar, 3Ji X. Nazar L.F. Advances in Li-S batteries.J. Mater. Chem. 2010; 20: 9821-9826Crossref Scopus (1002) Google Scholar, 5Fang R. Zhao S. Sun Z. Wang D.-W. Cheng H.-M. Li F. More reliable lithium-sulfur batteries: status, solutions and prospects.Adv. Mater. 2017; 29: 1606823Crossref Scopus (85) Google Scholar Despite the tremendous efforts devoted in this field, the state-of-the-art battery systems are still insufficient for the aforementioned applications. Particularly, conventional lithium-ion batteries (LIBs) constructed with a graphite anode and a lithiated transition metal oxide (TMO) cathode are reaching their performance limits.8Li M. Lu J. Chen Z. Amine K. 30 years of lithium-ion batteries.Adv. Mater. 2018; : e1800561Crossref PubMed Scopus (3) Google Scholar, 9Sun Y. Liu N. Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nat. Energy. 2016; 1: 16071Crossref Google Scholar The development of advanced LIBs with high power/energy density and long-term cycling stability is expected to emerge from new electrode materials and new storage mechanisms, which are always associated with many challenging issues such as irreversibility and instability due to the possible phase transformation and side reactions upon electrochemical processes.1Etacheri V. Marom R. Elazari R. Salitra G. Aurbach D. Challenges in the development of advanced Li-ion batteries: a review.Energy Environ. Sci. 2011; 4: 3243-3262Crossref Scopus (0) Google Scholar, 10Lu Y. Yu L. Lou X.W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries.Chem. 2018; 4: 972-996Abstract Full Text Full Text PDF Scopus (15) Google Scholar As one of the next-generation batteries, lithium-sulfur batteries (LSBs) have drawn great attention due to their high theoretical energy density (2,500 Wh kg−1) and specific capacity (1,675 mAh g−1), and the use of nontoxic sulfur with low cost and high abundance, which favors large-scale fabrication.3Ji X. Nazar L.F. Advances in Li-S batteries.J. Mater. Chem. 2010; 20: 9821-9826Crossref Scopus (1002) Google Scholar, 4Manthiram A. Fu Y. Chung S.-H. Zu C. Su Y.-S. Rechargeable lithium-sulfur batteries.Chem. Rev. 2014; 114: 11751-11787Crossref PubMed Scopus (1196) Google Scholar, 5Fang R. Zhao S. Sun Z. Wang D.-W. Cheng H.-M. Li F. More reliable lithium-sulfur batteries: status, solutions and prospects.Adv. Mater. 2017; 29: 1606823Crossref Scopus (85) Google Scholar However, their practical applications are hindered by several challenges: firstly, the insulating nature of sulfur and discharged products (Li2S2 and Li2S) leads to sluggish electrochemical reactions and low sulfur utilization. Secondly, the solubility of long-chain polysulfides creates an internal “shuttle” phenomenon, resulting in low charging efficiency and fast capacity fading. Thirdly, the volume variation (∼80%) upon electrochemical cycling may cause pulverization of the electrodes. Other advanced rechargeable batteries, such as lithium-oxygen batteries (LOBs) and sodium-ion batteries (SIBs), exhibit intriguing advantages in terms of either low cost or high theoretical energy density; however, they suffer from a considerable gap between their theoretical and practical performances. For LOBs, many technical issues remain to be addressed, such as the sluggish redox kinetics and the formation of solid discharged products (e.g., Li2O2), which would cause low round-trip efficiency and cycling stability.11Zhang P. Zhao Y. Zhang X. Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries.Chem. Soc. Rev. 2018; 47: 2921-3004Crossref PubMed Google Scholar, 12Jung K.-N. Kim J. Yamauchi Y. Park M.-S. Lee J.-W. Kim J.H. Rechargeable lithium-air batteries: a perspective on the development of oxygen electrodes.J. Mater. Chem. A. 2016; 4: 14050-14068Crossref Google Scholar SIBs have been developed for energy storage owing to the huge availability of sodium and its low cost. However, the larger ionic radius of sodium than that of lithium leads to a much slower diffusion kinetics and larger volume variation, thus causing poor rate capabilities and inferior cycling stability.6Palomares V. Serras P. Villaluenga I. Hueso K.B. Carretero-Gonzalez J. Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems.Energy Environ. Sci. 2012; 5: 5884-5901Crossref Scopus (1670) Google Scholar, 7Zou G. Hou H. Ge P. Huang Z. Zhao G. Yin D. Ji X. Metal-organic framework-derived materials for sodium energy storage.Small. 2018; 14: 1702648Crossref Scopus (12) Google Scholar To overcome the above-mentioned hurdles in each battery system, a primary necessity is to seek adequate electrode materials with proper physical (electrical and ionic conductivities) and electrochemical (redox and catalytic activities) properties, as well as novel structures and chemical compositions, which could not only provide a high capacity with their multiple active sites, but also ensure excellent stability from their advanced structures. MOFs have flourished as attractive platforms for designing advanced electrode materials of various battery systems.13Wang L. Han Y. Feng X. Zhou J. Qi P. Wang B. Metal-organic frameworks for energy storage: batteries and supercapacitors.Coord. Chem. Rev. 2016; 307: 361-381Crossref Scopus (246) Google Scholar, 14Xia W. Mahmood A. Zou R. Xu Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion.Energy Environ. Sci. 2015; 8: 1837-1866Crossref Google Scholar, 15Liang Z. Qu C. Guo W. Zou R. Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion.Adv. Mater. 2017; 30: 1702891Crossref Scopus (10) Google Scholar, 16Wang H. Zhu Q.-L. Zou R. Xu Q. Metal-organic frameworks for energy applications.Chem. 2017; 2: 52-80Abstract Full Text Full Text PDF Google Scholar, 17Zhou J. Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage.Chem. Soc. Rev. 2017; 46: 6927-6945Crossref PubMed Google Scholar Owing to the diversity of MOFs and the development of nanotechnology, MOF-related materials, including MOFs/MOF composites and MOF-derived materials, with controllable structures and compositions offer opportunities to tackle some of the aforementioned issues in each battery system (Figure 1). The intrinsically porous structure of MOFs enables a facile electrolyte penetration and ion transportation, while the designable components promise the incorporation of electroactive sites, offering infinite possibilities for the search of candidate electrode materials for different battery systems. However, just like a double-edged sword, many MOFs suffer from poor electrical conductivity, low tap density, and irreversible structural degradation upon the charge/discharge processes, which could impede their practical utilization.13Wang L. Han Y. Feng X. Zhou J. Qi P. Wang B. Metal-organic frameworks for energy storage: batteries and supercapacitors.Coord. Chem. Rev. 2016; 307: 361-381Crossref Scopus (246) Google Scholar, 15Liang Z. Qu C. Guo W. Zou R. Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion.Adv. Mater. 2017; 30: 1702891Crossref Scopus (10) Google Scholar, 18Zhang Y. Riduan S.N. Wang J. Redox active metal- and covalent organic frameworks for energy storage: balancing porosity and electrical conductivity.Chem. Eur. J. 2017; 23: 16419-16431Crossref PubMed Scopus (8) Google Scholar Comparatively, MOF-derived materials, obtained by using MOFs as self-sacrificial templates, hold more promise as electrode materials, because most of them not only inherit the porous structures of MOF precursors, but also exhibit excellent electrical conductivity offered by the carbon component.13Wang L. Han Y. Feng X. Zhou J. Qi P. Wang B. Metal-organic frameworks for energy storage: batteries and supercapacitors.Coord. Chem. Rev. 2016; 307: 361-381Crossref Scopus (246) Google Scholar, 14Xia W. Mahmood A. Zou R. Xu Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion.Energy Environ. Sci. 2015; 8: 1837-1866Crossref Google Scholar Overall, the development of MOF-related (MOFs/MOF composites and MOF-derived) electrode materials has been an exciting inter-disciplinary area, where opportunities and challenges coexist. In this perspective, we focus on MOFs/MOF composites and MOF-derived materials as electrode materials for rechargeable batteries (LIBs, LSBs, LOBs, and SIBs). By discussing the significant milestones in these research areas, we not only highlight the crucial advantages that MOFs/MOF composites and MOF-derived materials offer in battery systems, but also emphasize the concomitant issues and possible solutions to present a more objective overview. For each battery system, some design principles of component manipulation and structure engineering are provided, along with a discussion on both the benefits and limitations offered by MOFs/MOF composites and MOF-derived materials in rechargeable batteries. At the end, a basic guideline for MOF-related material fabrication and future prospects for further development are presented. MOFs are highly porous materials constructed by inorganic metal nodes and organic ligands, and have been extensively explored in different battery systems in the past decades (Table 1). Their adjustable porous structures and controllable compositions at molecular level are advantageous for the search of advanced electrode materials for batteries (e.g., LIBs, LSBs, LOBs, and SIBs). Despite the attractive features, such as versatility, tunability, and functionality, the application of the MOF electrode is impeded by many challenging issues, including the low conductivity and inferior electrochemical stability of many MOFs. MOFs/MOF composites as electrode materials offer both benefits and limitations to the overall battery systems. An in-depth investigation on the electrochemical mechanisms and structure-property-performance relationships is required for future material design and optimization.Table 1Summary of MOF-Related Electrode Materials for Rechargeable BatteriesSampleMOF UtilizedApplicationLoading (M/P)aM, loading mass; P, loading percentage.Initial Capacity (CC/DC/R)bCC, charge capacity (mAh g−1); DC, discharge capacity (mAh g−1); R, rate (mA g−1).Cycling Stability (RC/R/CN)cRC, reversible capacity (mAh g−1); R, rate (mA g−1); CN, cycling number.ReferenceMIL-53(Fe)MIL-53(Fe)LIB-cathode10 mg cm−2 (active powder)/85%–70/0.025C/–Férey et al.19Férey G. Millange F. Morcrette M. Serre C. Doublet M.-L. Grenèche J.-M. Tarascon J.-M. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties.Angew. Chem. Int. Ed. 2007; 46: 3259-3263Crossref PubMed Scopus (335) Google Scholar 2007MIL-68(Fe)MIL-68(Fe)LIB-cathode–/70%–30/0.1C/–Fateeva et al.20Fateeva A. Horcajada P. Devic T. Serre C. Marrot J. Grenèche J.-M. Morcrette M. Tarascon J.-M. Maurin G. Férey G. Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid.Eur. J. Inorg. Chem. 2010; 2010: 3789-3794Crossref Scopus (76) Google Scholar 2010MIL-101(Fe)MIL-101(Fe)LIB-cathode−/−130/107/0.02C72/0.2C/100Yamada et al.21Yamada T. Shiraishi K. Kitagawa H. Kimizuka N. Applicability of MIL-101(Fe) as a cathode of lithium ion batteries.Chem. Commun. 2017; 53: 8215-8218Crossref PubMed Google Scholar 2017Mn[Mn(CN)6]0.93·□0.07·0.65H2OMn[Mn(CN)6]0.93·□0.07·0.65H2OLIB-cathode–/75%–/197/30–Asakura et al.22Asakura D. Okubo M. Mizuno Y. Kudo T. Zhou H. Ikedo K. Mizokawa T. Okazawa A. Kojima N. Fabrication of a cyanide-bridged coordination polymer electrode for enhanced electrochemical ion storage ability.J. Phys. Chem. C. 2012; 116: 8364-8369Crossref Scopus (55) Google Scholar 2012[email protected]K0.1Cu[Fe(CN)6]0.7·3.8H2O and K0.1Ni[Fe(CN)6]0.7·4.1H2OLIB-cathode––/99/10–Asakura et al.23Asakura D. Li C.H. Mizuno Y. Okubo M. Zhou H. Talham D.R. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: [email protected] nanoparticles with enhanced cyclability.J. Am. Chem. Soc. 2013; 135: 2793-2799Crossref PubMed Scopus (81) Google Scholar 2013MPB/RGOK1.8Mn1.1Fe(CN)6·0.27H2OLIB-cathode–/80%–/150/30∼120/30/35Wang et al.24Wang X.-J. Krumeich F. Nesper R. Nanocomposite of manganese ferrocyanide and graphene: a promising cathode material for rechargeable lithium ion batteries.Electrochem. Commun. 2013; 34: 246-249Crossref Scopus (13) Google Scholar 2013MIL-53(Fe)_quinone1MIL-53(Fe)LIB-cathode5–8 mg cm−2 (active material)/80%–/93/0.1C–de Combarieu et al.25de Combarieu G. Morcrette M. Millange F. Guillou N. Cabana J. Grey C.P. Margiolaki I. Férey G. Tarascon J.M. Influence of the benzoquinone sorption on the structure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a lithium-ion battery.Chem. Mater. 2009; 21: 1602-1611Crossref Scopus (0) Google Scholar 2009Cu(2,7-AQDC)Cu(2,7-AQDC)LIB-cathode–/10%–/147/1 mA105/1 mA/50Zhang et al.26Zhang Z. Yoshikawa H. Awaga K. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.J. Am. Chem. Soc. 2014; 136: 16112-16115Crossref PubMed Scopus (0) Google Scholar 2014Cu-TCACu-TCALIB-cathode0.5 mg cm−2 (active material)/80%–/102.2/0.5C45.1/2C/200Peng et al.27Peng Z. Yi X. Liu Z. Shang J. Wang D. Triphenylamine-based metal-organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability.ACS Appl. Mater. Interfaces. 2016; 8: 14578-14585Crossref PubMed Scopus (21) Google Scholar 2016Fe-BTC MOFFe-BTC MOFLIB-anode∼2 mg (active material)/70%683.2/1,765.5/1001,021.5/100/100Hu et al.28Hu X. Lou X. Li C. Ning Y. Liao Y. Chen Q. Mananga E.S. Shen M. Hu B. Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties.RSC Adv. 2016; 6: 114483-114490Crossref Scopus (5) Google Scholar 2016CoBTC-EtOHCo3(1,3,5-BTC)2LIB-anode∼2.5 mg (active material)/70%879/1,790.3/100473/2,000/500Li et al.29Li C. Lou X. Shen M. Hu X. Guo Z. Wang Y. Hu B. Chen Q. High anodic performance of co 1,3,5-benzenetricarboxylate coordination polymers for li-ion battery.ACS Appl. Mater. Interfaces. 2016; 8: 15352-15360Crossref PubMed Scopus (48) Google Scholar 2016Mn-PBAMn[Fe(CN)6]0.6667·nH2OLIB-anode∼0.7 mg (active material)/70%544.5/1,123.7/200295.7/200/100Xiong et al.30Xiong P. Zeng G. Zeng L. Wei M. Prussian blue analogues Mn[Fe(CN)6]0.6667·nH2O cubes as an anode material for lithium-ion batteries.Dalton Trans. 2015; 44: 16746-16751Crossref PubMed Google Scholar 2015Mn-1,[email protected]Mn-1,4-BDCLIB-anode1.5 mg cm−2/70%706.4/1,746/100974/100/100Hu et al.31Hu H. Lou X. Li C. Hu X. Li T. Chen Q. Shen M. Hu B. A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries.New J. Chem. 2016; 40: 9746-9752Crossref Google Scholar 2016Cu3(BTC)2Cu3(BTC)2LIB-anode2.0 mg cm−2 (active mass loading)/70%641/1,497/96474/383/50Maiti et al.32Maiti S. Pramanik A. Manju U. Mahanty S. Cu3(1,3,5-benzenetricarboxylate)2 metal-organic framework: a promising anode material for lithium-ion battery.Micropor. Mesopor. Mater. 2016; 226: 353-359Crossref Scopus (38) Google Scholar 2016S-Co-MOFCo2(OH)2BDCLIB-anode∼2.0 mg cm−2 (active mass loading)/70%1,564/1,946/100435/1,000/1,000Li et al.33Li C. Hu X. Lou X. Zhang L. Wang Y. Amoureux J.-P. Shen M. Chen Q. Hu B. The organic-moiety-dominated Li+ intercalation/deintercalation mechanism of a cobalt-based metal-organic framework.J. Mater. Chem. A. 2016; 4: 16245-16251Crossref Google Scholar 2016Co-TFBTCCo-TFBTCLIB-anode∼1.0 mg cm−2/70%938.9/1,699.8/1001,074.6/100/50Lou et al.34Lou X. Hu X. Li C. Ning Y. Chen Q. Shen M. Hu B. Room-temperature synthesis of a cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries.New J. Chem. 2017; 41: 1813-1819Crossref Google Scholar 2017NNU-11NNU-11LIB-anode–/70%810.6/1,322.3/50750/50/200Huang et al.35Huang Q. Wei T. Zhang M. Dong L.-Z. Zhang A.M. Li S.-L. Liu W.-J. Liu J. Lan Y.-Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance.J. Mater. Chem. A. 2017; 5: 8477-8483Crossref Google Scholar 2017FOR1Zn3(HCOO)6LIB-anode1.25 mg cm−2 (active material)/70%693/1,344/60560/60/60Saravanan et al.36Saravanan K. Nagarathinam M. Balaya P. Vittal J.J. Lithium storage in a metal organic framework with diamondoid topology - a case study on metal formates.J. Mater. Chem. 2010; 20: 8329-8335Crossref Scopus (108) Google Scholar 2010GCP350Co-MOFLIB-anode∼1.5 mg cm−2/100%1,198/1,978/2001,192/200/100Xiao et al.37Xiao P. Bu F. Zhao R. Aly Aboud M.F. Shakir I. Xu Y. Sub-5 nm ultrasmall metal-organic framework nanocrystals for highly efficient electrochemical energy storage.ACS Nano. 2018; 12: 3947-3953Crossref PubMed Scopus (2) Google Scholar 2018GF/PBPBLIB-anode–/100%385/578.7/100514/100/150Zhu et al.38Zhu M. Zhou H. Shao J. Feng J. Yuan A. Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries.J. Alloys Compd. 2018; 749: 811-817Crossref Google Scholar 2018550N (ZnO QDs)MOF-5LIB-anode–/60%–/2,300/751,200/75/50Yang et al.39Yang S.J. Nam S. Kim T. Im J.H. Jung H. Kang J.H. Wi S. Park B. Park C.R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework.J. Am. Chem. Soc. 2013; 135: 7394-7397Crossref PubMed Scopus (270) Google Scholar 2013Hierarchical Fe2O3 microboxesPBLIB-anode–/70%–945/200/30Zhang et al.40Zhang L. Wu H.B. Madhavi S. Hng H.H. Lou X.W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties.J. Am. Chem. Soc. 2012; 134: 17388-17391Crossref PubMed Scopus (0) Google Scholar 2012Multiple-shelled Fe2O3 microboxesPBLIB-anode–/70%917/1,473/200650/200/30Zhang et al.41Zhang L. Wu H.B. Lou X.W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity.J. Am. Chem. Soc. 2013; 135: 10664-10672Crossref PubMed Scopus (282) Google Scholar 2013Fe2O3/SnO2 microboxesPBLIB-anode–/70%904/1,751/200500/200/100Zhang et al.41Zhang L. Wu H.B. Lou X.W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity.J. Am. Chem. Soc. 2013; 135: 10664-10672Crossref PubMed Scopus (282) Google Scholar 2013[email protected] QDs/C NA grown on CCZIF-8LIB-anode1.7–2 mg cm−2712/785/500699/500/100Zhang et al.42Zhang G. Hou S. Zhang H. Zeng W. Yan F. Li C.C. Duan H. High-performance and ultra-stable lithium-ion batteries based on MOF-derived [email protected] quantum dots/C core-shell nanorod arrays on a carbon cloth anode.Adv. Mater. 2015; 27: 2400-2405Crossref PubMed Scopus (249) Google Scholar 20153DG/Fe2O3PBLIB-anode–1,174.4/1,870.4/2001,129/200/130Jiang et al.43Jiang T. Bu F. Feng X. Shakir I. Hao G. Xu Y. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery.ACS Nano. 2017; 11: 5140-5147Crossref PubMed Scopus (51) Google Scholar 2017ZCNPZIF-67LIB-anode––1,200/200/400Du et al.44Du M. Rui K. Chang Y. Zhang Y. Ma Z. Sun W. Yan Q. Zhu J. Huang W. Carbon necklace incorporated electroactive reservoir constructing flexible papers for advanced lithium-ion batteries.Small. 2018; 14: 1702770Crossref Scopus (6) Google Scholar 2018MCNPMIL-88LIB-anode––980/200/400Du et al.44Du M. Rui K. Chang Y. Zhang Y. Ma Z. Sun W. Yan Q. Zhu J. Huang W. Carbon necklace incorporated electroactive reservoir constructing flexible papers for advanced lithium-ion batteries.Small. 2018; 14: 1702770Crossref Scopus (6) Google Scholar 2018[email protected]3O4/NC[email protected]LIB-anode0.2 mg cm−2 (active material)/70%1,585/2,867/0.05C1,741/1C/600Wang et al.45Wang Y. Gao Y. Shao J. Holze R. Chen Z. Yun Y. Qu Q. Zheng H. Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage.J. Mater. Chem. A. 2018; 6: 3659-3666Crossref Google Scholar 2018Co3O4/N-CN-rich Co-MOFLIB-anode–/70%613/1,210/1,000579/1,000/200Han et al.46Han X. Chen W.-M. Han X. Tan Y.-Z. Sun D. Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries.J. Mater. Chem. A. 2016; 4: 13040-13045Crossref Google Scholar 2016ZnxCo3-xO4 hollow polyhedraZn-Co-ZIFLIB-anode–/80%969/1,272/100990//100/50Wu et al.47Wu R. Qian X. Zhou K. Wei J. Lou J. Ajayan P.M. Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries.ACS Nano. 2014; 8: 6297-6303Crossref PubMed Scopus (222) Google Scholar 2014CoFe2O4 nanocubesCo[Fe(CN)6]0.667LIB-anode–/80%1,190/1,352/1C1,115/1C/200Guo et al.48Guo H. Li T. Chen W. Liu L. Yang X. Wang Y. Guo Y. General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage.Nanoscale. 2014; 6: 15168-15174Crossref PubMed Google Scholar 2014Hollow Ni-Fe-O nanocageNi2Fe(CN)6LIB-anode–/85%1,152/1,245/1C1,071/1C/200Guo et al.49Guo H. Li T. Chen W. Liu L. Qiao J. Zhang J. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage.Sci. Rep. 2015; 5: 13310Crossref PubMed Scopus (14) Google Scholar 2015Fe2O3@NiCo2O4 porous nanocagesCo3[Fe(CN)6]2 and Ni3[Co(CN)6]2LIB-anode–/50%902.7/1,311.4/0.1C1,079.6/0.1C/100Huang et al.50Huang G. Zhang L. Zhang F. Wang L. Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries.Nanoscale. 2014; 6: 5509-5515Crossref PubMed Google Scholar 2014Co3O4/TiO2Ti4+ exchanged ZIF-67LIB-anode–/70%535/662/500642/500/200Xu et al.51Xu W. Cui X. Xie Z. Dietrich G. Wang Y. Integrated Co3O4/TiO2 composite hollow polyhedrons prepared via cation-exchange metal-organic framework for superior lithium-ion batteries.Electrochim. Acta. 2016; 222: 1021-1028Crossref Scopus (10) Google Scholar 2016Co3O4@NGN[email protected]LIB-anode–/70%976/1,865/100955/200/100Sui et al.52Sui Z.-Y. Zhang P.-Y. Xu M.-Y. Liu Y.-W. Wei Z.-X. Han B.-H. Metal-organic framework-derived metal oxide embedded in nitrogen-doped graphene network for high-performance lithium-ion batteries.ACS Appl. Mater. Interfaces. 2017; 9: 43171-43178Crossref PubMed Scopus (3) Google Scholar 2017[email protected]@CNTs[email protected]LIB-anode1–2 mg/–896/1,298/100850/100/200Zhang et al.53Zhang H. Wang Y. Zhao W. Zou M. Chen Y. Yang L. Xu L. Wu H. Cao A. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes.ACS Appl. Mater. Interfaces. 2017; 9: 37813-37822Crossref PubMed Scopus (7) Google Scholar 20173DGN/CuO3DNG/Cu-MOFLIB-anode0.95 mg cm−2/–422/569/100405/100/50Ji et al.54Ji D. Zhou H. Tong Y. Wang J. Zhu M. Chen T. Yuan A. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries.Chem. Eng. J. 2017; 313: 1623-1632Crossref Scopus (34) Google Scholar 2017ZnS [email protected]ZIF-8LIB-anode1.0–1.2 mg cm−2/70%∼600/945/600840/600/300Chen et al.55Chen Z. Wu R. Wang H. Jiang Y. Jin L. Guo Y. Song Y. Fang F. Sun D. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties.Chem. Eng. J. 2017; 326: 680-690Crossref Scopus (23) Google Scholar 2017CoxP-NCZIF-67LIB-anode–/50%1,632/2680/100820/100/100Xia et al.56Xia G. Su J. Li M. Jiang P. Yang Y. Chen Q. A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity.J. Mater. Chem. A. 2017; 5: 10321-10327Crossref Google Scholar 2017Porous TiN/N-doped carbonMIL-125(Ti)LIB-anode–/70%645/1,446/50310/2,000/400Xiu et al.57Xiu Z. Kim D. Alfaruqi M.H. Gim J. Song J. Kim S. Duong P.T. Baboo J.P. Mathew V. Kim J. Porous TiN nanoparticles embedded" @default.
- W2895880481 created "2018-10-26" @default.
- W2895880481 creator A5011196951 @default.
- W2895880481 creator A5064109029 @default.
- W2895880481 creator A5078027491 @default.
- W2895880481 creator A5078663016 @default.
- W2895880481 date "2018-11-01" @default.
- W2895880481 modified "2023-10-16" @default.
- W2895880481 title "Metal-Organic Frameworks for Batteries" @default.
- W2895880481 cites W1255788758 @default.
- W2895880481 cites W1767139178 @default.
- W2895880481 cites W1870512141 @default.
- W2895880481 cites W1966788841 @default.
- W2895880481 cites W1968860517 @default.
- W2895880481 cites W1971756711 @default.
- W2895880481 cites W1971942549 @default.
- W2895880481 cites W1972047028 @default.
- W2895880481 cites W1973105258 @default.
- W2895880481 cites W1974248771 @default.
- W2895880481 cites W1977105307 @default.
- W2895880481 cites W1979344335 @default.
- W2895880481 cites W1985689268 @default.
- W2895880481 cites W1990839564 @default.
- W2895880481 cites W1991128506 @default.
- W2895880481 cites W1996015856 @default.
- W2895880481 cites W1998062017 @default.
- W2895880481 cites W2004666790 @default.
- W2895880481 cites W2021403769 @default.
- W2895880481 cites W2021435259 @default.
- W2895880481 cites W2024540372 @default.
- W2895880481 cites W2027319247 @default.
- W2895880481 cites W2027579900 @default.
- W2895880481 cites W2028494374 @default.
- W2895880481 cites W2030611348 @default.
- W2895880481 cites W2032570058 @default.
- W2895880481 cites W2033446000 @default.
- W2895880481 cites W2034008983 @default.
- W2895880481 cites W2034922821 @default.
- W2895880481 cites W2035410236 @default.
- W2895880481 cites W2044646158 @default.
- W2895880481 cites W2045354601 @default.
- W2895880481 cites W2049448500 @default.
- W2895880481 cites W2050808196 @default.
- W2895880481 cites W2051077384 @default.
- W2895880481 cites W2058597010 @default.
- W2895880481 cites W2062184077 @default.
- W2895880481 cites W2064397592 @default.
- W2895880481 cites W2068713030 @default.
- W2895880481 cites W2069186175 @default.
- W2895880481 cites W2071952712 @default.
- W2895880481 cites W2079054933 @default.
- W2895880481 cites W2096996151 @default.
- W2895880481 cites W2107929389 @default.
- W2895880481 cites W2108220471 @default.
- W2895880481 cites W2109738153 @default.
- W2895880481 cites W2109772287 @default.
- W2895880481 cites W2110422574 @default.
- W2895880481 cites W2110864332 @default.
- W2895880481 cites W2114042821 @default.
- W2895880481 cites W2119504742 @default.
- W2895880481 cites W2125658152 @default.
- W2895880481 cites W2137696182 @default.
- W2895880481 cites W2139324921 @default.
- W2895880481 cites W2140321412 @default.
- W2895880481 cites W2142988903 @default.
- W2895880481 cites W2143904353 @default.
- W2895880481 cites W2151207643 @default.
- W2895880481 cites W2152043273 @default.
- W2895880481 cites W2152664881 @default.
- W2895880481 cites W2156487970 @default.
- W2895880481 cites W2156528973 @default.
- W2895880481 cites W2213575239 @default.
- W2895880481 cites W2219140017 @default.
- W2895880481 cites W2221694073 @default.
- W2895880481 cites W2235330388 @default.
- W2895880481 cites W2254912928 @default.
- W2895880481 cites W2284684952 @default.
- W2895880481 cites W2286544250 @default.
- W2895880481 cites W2291145446 @default.
- W2895880481 cites W2293333352 @default.
- W2895880481 cites W2296038365 @default.
- W2895880481 cites W2318050461 @default.
- W2895880481 cites W2320242446 @default.
- W2895880481 cites W2325060725 @default.
- W2895880481 cites W2328134238 @default.
- W2895880481 cites W2328939392 @default.
- W2895880481 cites W2330512585 @default.
- W2895880481 cites W2334125856 @default.
- W2895880481 cites W2336629932 @default.
- W2895880481 cites W2340365080 @default.
- W2895880481 cites W2345968302 @default.
- W2895880481 cites W2394835007 @default.
- W2895880481 cites W2417441427 @default.
- W2895880481 cites W2420611669 @default.
- W2895880481 cites W2438336468 @default.
- W2895880481 cites W2470209020 @default.
- W2895880481 cites W2470713538 @default.
- W2895880481 cites W2482083820 @default.