Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895883059> ?p ?o ?g. }
- W2895883059 endingPage "1221" @default.
- W2895883059 startingPage "1211" @default.
- W2895883059 abstract "Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WML) in multiple sclerosis (MS). The most widely established MRI outcome measure is the volume of hyperintense lesions on T2-weighted images (T2L). Unfortunately, T2L are non-specific for the level of tissue destruction and show a weak relationship to clinical status. Interest in lesions that appear hypointense on T1-weighted images (T1L) (“black holes”) has grown because T1L provide more specificity for axonal loss and a closer link to neurologic disability. The technical difficulty of T1L segmentation has led investigators to rely on time-consuming manual assessments prone to inter- and intra-rater variability. This study aims to develop an automatic T1L segmentation approach, adapted from a T2L segmentation algorithm. T1, T2, and fluid-attenuated inversion recovery (FLAIR) sequences were acquired from 40 MS subjects at 3 Tesla (3 T). T2L and T1L were manually segmented. A Method for Inter-Modal Segmentation Analysis (MIMoSA) was then employed. Using cross-validation, MIMoSA proved to be robust for segmenting both T2L and T1L. For T2L, a Sørensen-Dice coefficient (DSC) of 0.66 and partial AUC (pAUC) up to 1% false positive rate of 0.70 were achieved. For T1L, 0.53 DSC and 0.64 pAUC were achieved. Manual and MIMoSA segmented volumes were correlated and resulted in 0.88 for T1L and 0.95 for T2L. The correlation between Expanded Disability Status Scale (EDSS) scores and manual versus automatic volumes were similar for T1L (0.32 manual vs. 0.34 MIMoSA), T2L (0.33 vs. 0.32), and the T1L/T2L ratio (0.33 vs 0.33). Though originally designed to segment T2L, MIMoSA performs well for segmenting T1 black holes in patients with MS." @default.
- W2895883059 created "2018-10-26" @default.
- W2895883059 creator A5016103055 @default.
- W2895883059 creator A5022493058 @default.
- W2895883059 creator A5036912514 @default.
- W2895883059 creator A5037974362 @default.
- W2895883059 creator A5039906500 @default.
- W2895883059 creator A5055764402 @default.
- W2895883059 creator A5062417963 @default.
- W2895883059 creator A5069892905 @default.
- W2895883059 creator A5076688030 @default.
- W2895883059 creator A5087393296 @default.
- W2895883059 date "2018-01-01" @default.
- W2895883059 modified "2023-10-15" @default.
- W2895883059 title "A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis" @default.
- W2895883059 cites W1566432666 @default.
- W2895883059 cites W1875751169 @default.
- W2895883059 cites W1973457617 @default.
- W2895883059 cites W1978051930 @default.
- W2895883059 cites W1984505558 @default.
- W2895883059 cites W1990269401 @default.
- W2895883059 cites W1996745671 @default.
- W2895883059 cites W1998115593 @default.
- W2895883059 cites W2000357300 @default.
- W2895883059 cites W2004691878 @default.
- W2895883059 cites W2013013146 @default.
- W2895883059 cites W2021204548 @default.
- W2895883059 cites W2038054049 @default.
- W2895883059 cites W2047440597 @default.
- W2895883059 cites W2071415177 @default.
- W2895883059 cites W2075312775 @default.
- W2895883059 cites W2084392880 @default.
- W2895883059 cites W2096609500 @default.
- W2895883059 cites W2099069333 @default.
- W2895883059 cites W2105206040 @default.
- W2895883059 cites W2111082632 @default.
- W2895883059 cites W2117340355 @default.
- W2895883059 cites W2120841849 @default.
- W2895883059 cites W2130728435 @default.
- W2895883059 cites W2145126338 @default.
- W2895883059 cites W2147098113 @default.
- W2895883059 cites W2160804681 @default.
- W2895883059 cites W2162811344 @default.
- W2895883059 cites W2235974182 @default.
- W2895883059 cites W2291533047 @default.
- W2895883059 cites W2600209173 @default.
- W2895883059 cites W2732197575 @default.
- W2895883059 cites W4241890711 @default.
- W2895883059 doi "https://doi.org/10.1016/j.nicl.2018.10.013" @default.
- W2895883059 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6224321" @default.
- W2895883059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30391859" @default.
- W2895883059 hasPublicationYear "2018" @default.
- W2895883059 type Work @default.
- W2895883059 sameAs 2895883059 @default.
- W2895883059 citedByCount "13" @default.
- W2895883059 countsByYear W28958830592019 @default.
- W2895883059 countsByYear W28958830592020 @default.
- W2895883059 countsByYear W28958830592022 @default.
- W2895883059 countsByYear W28958830592023 @default.
- W2895883059 crossrefType "journal-article" @default.
- W2895883059 hasAuthorship W2895883059A5016103055 @default.
- W2895883059 hasAuthorship W2895883059A5022493058 @default.
- W2895883059 hasAuthorship W2895883059A5036912514 @default.
- W2895883059 hasAuthorship W2895883059A5037974362 @default.
- W2895883059 hasAuthorship W2895883059A5039906500 @default.
- W2895883059 hasAuthorship W2895883059A5055764402 @default.
- W2895883059 hasAuthorship W2895883059A5062417963 @default.
- W2895883059 hasAuthorship W2895883059A5069892905 @default.
- W2895883059 hasAuthorship W2895883059A5076688030 @default.
- W2895883059 hasAuthorship W2895883059A5087393296 @default.
- W2895883059 hasBestOaLocation W28958830591 @default.
- W2895883059 hasConcept C101070640 @default.
- W2895883059 hasConcept C118552586 @default.
- W2895883059 hasConcept C126838900 @default.
- W2895883059 hasConcept C143409427 @default.
- W2895883059 hasConcept C146638467 @default.
- W2895883059 hasConcept C154945302 @default.
- W2895883059 hasConcept C2780640218 @default.
- W2895883059 hasConcept C2780892749 @default.
- W2895883059 hasConcept C2989005 @default.
- W2895883059 hasConcept C41008148 @default.
- W2895883059 hasConcept C71924100 @default.
- W2895883059 hasConcept C89600930 @default.
- W2895883059 hasConcept C95922358 @default.
- W2895883059 hasConceptScore W2895883059C101070640 @default.
- W2895883059 hasConceptScore W2895883059C118552586 @default.
- W2895883059 hasConceptScore W2895883059C126838900 @default.
- W2895883059 hasConceptScore W2895883059C143409427 @default.
- W2895883059 hasConceptScore W2895883059C146638467 @default.
- W2895883059 hasConceptScore W2895883059C154945302 @default.
- W2895883059 hasConceptScore W2895883059C2780640218 @default.
- W2895883059 hasConceptScore W2895883059C2780892749 @default.
- W2895883059 hasConceptScore W2895883059C2989005 @default.
- W2895883059 hasConceptScore W2895883059C41008148 @default.
- W2895883059 hasConceptScore W2895883059C71924100 @default.
- W2895883059 hasConceptScore W2895883059C89600930 @default.
- W2895883059 hasConceptScore W2895883059C95922358 @default.
- W2895883059 hasFunder F4320306161 @default.