Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895889524> ?p ?o ?g. }
- W2895889524 abstract "Relation extraction is an important task in the field of natural language processing. In this paper, we describe our approach for the BioCreative VI Task 5: text mining chemical-protein interactions. We investigate multiple deep neural network (DNN) models, including convolutional neural networks, recurrent neural networks (RNNs) and attention-based (ATT-) RNNs (ATT-RNNs) to extract chemical-protein relations. Our experimental results indicate that ATT-RNN models outperform the same models without using attention and the ATT-gated recurrent unit (ATT-GRU) achieves the best performing micro average F1 score of 0.527 on the test set among the tested DNNs. In addition, the result of word-level attention weights also shows that attention mechanism is effective on selecting the most important trigger words when trained with semantic relation labels without the need of semantic parsing and feature engineering. The source code of this work is available at https://github.com/ohnlp/att-chemprot." @default.
- W2895889524 created "2018-10-26" @default.
- W2895889524 creator A5002976916 @default.
- W2895889524 creator A5004523290 @default.
- W2895889524 creator A5009338463 @default.
- W2895889524 creator A5023661219 @default.
- W2895889524 creator A5027449919 @default.
- W2895889524 creator A5080116611 @default.
- W2895889524 creator A5087033178 @default.
- W2895889524 date "2018-01-01" @default.
- W2895889524 modified "2023-10-16" @default.
- W2895889524 title "Extracting chemical–protein relations using attention-based neural networks" @default.
- W2895889524 cites W1902237438 @default.
- W2895889524 cites W2032069669 @default.
- W2895889524 cites W2060515712 @default.
- W2895889524 cites W2064314529 @default.
- W2895889524 cites W2096951189 @default.
- W2895889524 cites W2107005506 @default.
- W2895889524 cites W2112543617 @default.
- W2895889524 cites W2121764873 @default.
- W2895889524 cites W2143017621 @default.
- W2895889524 cites W2147788440 @default.
- W2895889524 cites W2148130205 @default.
- W2895889524 cites W2154142897 @default.
- W2895889524 cites W2157331557 @default.
- W2895889524 cites W2159640576 @default.
- W2895889524 cites W2264517602 @default.
- W2895889524 cites W2313724773 @default.
- W2895889524 cites W2331398706 @default.
- W2895889524 cites W2335791510 @default.
- W2895889524 cites W2339107443 @default.
- W2895889524 cites W2513378248 @default.
- W2895889524 cites W2515462165 @default.
- W2895889524 cites W2565076951 @default.
- W2895889524 cites W2593438634 @default.
- W2895889524 cites W2604372572 @default.
- W2895889524 cites W2610394652 @default.
- W2895889524 cites W2620856883 @default.
- W2895889524 cites W2729101176 @default.
- W2895889524 cites W2734608416 @default.
- W2895889524 cites W2739952768 @default.
- W2895889524 cites W2740781568 @default.
- W2895889524 cites W2741502284 @default.
- W2895889524 cites W2750859203 @default.
- W2895889524 cites W2755814313 @default.
- W2895889524 cites W2963923670 @default.
- W2895889524 cites W2964217331 @default.
- W2895889524 cites W2964348125 @default.
- W2895889524 doi "https://doi.org/10.1093/database/bay102" @default.
- W2895889524 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6174551" @default.
- W2895889524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30295724" @default.
- W2895889524 hasPublicationYear "2018" @default.
- W2895889524 type Work @default.
- W2895889524 sameAs 2895889524 @default.
- W2895889524 citedByCount "25" @default.
- W2895889524 countsByYear W28958895242019 @default.
- W2895889524 countsByYear W28958895242020 @default.
- W2895889524 countsByYear W28958895242021 @default.
- W2895889524 countsByYear W28958895242022 @default.
- W2895889524 crossrefType "journal-article" @default.
- W2895889524 hasAuthorship W2895889524A5002976916 @default.
- W2895889524 hasAuthorship W2895889524A5004523290 @default.
- W2895889524 hasAuthorship W2895889524A5009338463 @default.
- W2895889524 hasAuthorship W2895889524A5023661219 @default.
- W2895889524 hasAuthorship W2895889524A5027449919 @default.
- W2895889524 hasAuthorship W2895889524A5080116611 @default.
- W2895889524 hasAuthorship W2895889524A5087033178 @default.
- W2895889524 hasBestOaLocation W28958895241 @default.
- W2895889524 hasConcept C108583219 @default.
- W2895889524 hasConcept C111919701 @default.
- W2895889524 hasConcept C119857082 @default.
- W2895889524 hasConcept C124101348 @default.
- W2895889524 hasConcept C138885662 @default.
- W2895889524 hasConcept C147168706 @default.
- W2895889524 hasConcept C153604712 @default.
- W2895889524 hasConcept C154945302 @default.
- W2895889524 hasConcept C162324750 @default.
- W2895889524 hasConcept C169903167 @default.
- W2895889524 hasConcept C177264268 @default.
- W2895889524 hasConcept C186644900 @default.
- W2895889524 hasConcept C187736073 @default.
- W2895889524 hasConcept C195807954 @default.
- W2895889524 hasConcept C199360897 @default.
- W2895889524 hasConcept C204321447 @default.
- W2895889524 hasConcept C25343380 @default.
- W2895889524 hasConcept C2776401178 @default.
- W2895889524 hasConcept C2776760102 @default.
- W2895889524 hasConcept C2778827112 @default.
- W2895889524 hasConcept C2780451532 @default.
- W2895889524 hasConcept C41008148 @default.
- W2895889524 hasConcept C41895202 @default.
- W2895889524 hasConcept C43126263 @default.
- W2895889524 hasConcept C50644808 @default.
- W2895889524 hasConcept C81363708 @default.
- W2895889524 hasConceptScore W2895889524C108583219 @default.
- W2895889524 hasConceptScore W2895889524C111919701 @default.
- W2895889524 hasConceptScore W2895889524C119857082 @default.
- W2895889524 hasConceptScore W2895889524C124101348 @default.
- W2895889524 hasConceptScore W2895889524C138885662 @default.
- W2895889524 hasConceptScore W2895889524C147168706 @default.