Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895893207> ?p ?o ?g. }
- W2895893207 abstract "The challenging inverse problem of blind deblurring has been investigated thoroughly for natural images. Existing algorithms exploit edge-type structures, or similarity to smaller patches within the image, to estimate the correct blurring kernel. However, these methods do not perform well enough on natural stochastic textures (NST), which are mostly random and in general are not characterized by distinct edges and contours. In NST even small kernels cause severe degradation to images. Restoration poses therefore an outstanding challenge. In this work, we refine an existing method by implementing an anisotropic fractal model to estimate the blur kernel's power spectral density. The final kernel is then estimated via an adaptation of a phase retrieval algorithm, originally proposed for sparse signals. We further incorporate additional constraints that are specific to blur filters, to yield even better results. The latter are compared with results obtained by recently published blind deblurring methods." @default.
- W2895893207 created "2018-10-26" @default.
- W2895893207 creator A5002916521 @default.
- W2895893207 creator A5034095527 @default.
- W2895893207 date "2019-02-01" @default.
- W2895893207 modified "2023-09-23" @default.
- W2895893207 title "Blind Deblurring of Natural Stochastic Textures Using an Anisotropic Fractal Model and Phase Retrieval Algorithm" @default.
- W2895893207 cites W1523954320 @default.
- W2895893207 cites W1792921166 @default.
- W2895893207 cites W1856231595 @default.
- W2895893207 cites W1962010357 @default.
- W2895893207 cites W1973207880 @default.
- W2895893207 cites W1974156367 @default.
- W2895893207 cites W1975835724 @default.
- W2895893207 cites W1983720087 @default.
- W2895893207 cites W1987075379 @default.
- W2895893207 cites W1991605728 @default.
- W2895893207 cites W1992309968 @default.
- W2895893207 cites W2001613283 @default.
- W2895893207 cites W2010315317 @default.
- W2895893207 cites W2013927061 @default.
- W2895893207 cites W2018332268 @default.
- W2895893207 cites W2021537669 @default.
- W2895893207 cites W2031586513 @default.
- W2895893207 cites W2031753087 @default.
- W2895893207 cites W2045807719 @default.
- W2895893207 cites W2068527285 @default.
- W2895893207 cites W2075861921 @default.
- W2895893207 cites W2106938619 @default.
- W2895893207 cites W2114435281 @default.
- W2895893207 cites W2122787031 @default.
- W2895893207 cites W2129945880 @default.
- W2895893207 cites W2138204001 @default.
- W2895893207 cites W2142224912 @default.
- W2895893207 cites W2146147703 @default.
- W2895893207 cites W2152375848 @default.
- W2895893207 cites W2154833891 @default.
- W2895893207 cites W2161804069 @default.
- W2895893207 cites W2166135831 @default.
- W2895893207 cites W2167307343 @default.
- W2895893207 cites W2172275395 @default.
- W2895893207 cites W2294215176 @default.
- W2895893207 cites W2323352593 @default.
- W2895893207 cites W233979554 @default.
- W2895893207 cites W2474628748 @default.
- W2895893207 cites W2540180983 @default.
- W2895893207 cites W2800860906 @default.
- W2895893207 cites W3215037115 @default.
- W2895893207 doi "https://doi.org/10.1109/tip.2018.2874291" @default.
- W2895893207 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30296232" @default.
- W2895893207 hasPublicationYear "2019" @default.
- W2895893207 type Work @default.
- W2895893207 sameAs 2895893207 @default.
- W2895893207 citedByCount "4" @default.
- W2895893207 countsByYear W28958932072019 @default.
- W2895893207 countsByYear W28958932072020 @default.
- W2895893207 countsByYear W28958932072022 @default.
- W2895893207 crossrefType "journal-article" @default.
- W2895893207 hasAuthorship W2895893207A5002916521 @default.
- W2895893207 hasAuthorship W2895893207A5034095527 @default.
- W2895893207 hasConcept C105795698 @default.
- W2895893207 hasConcept C106430172 @default.
- W2895893207 hasConcept C11413529 @default.
- W2895893207 hasConcept C114614502 @default.
- W2895893207 hasConcept C115961682 @default.
- W2895893207 hasConcept C134306372 @default.
- W2895893207 hasConcept C153180895 @default.
- W2895893207 hasConcept C154945302 @default.
- W2895893207 hasConcept C185429906 @default.
- W2895893207 hasConcept C203504353 @default.
- W2895893207 hasConcept C2777693668 @default.
- W2895893207 hasConcept C31972630 @default.
- W2895893207 hasConcept C33923547 @default.
- W2895893207 hasConcept C40636538 @default.
- W2895893207 hasConcept C41008148 @default.
- W2895893207 hasConcept C71134354 @default.
- W2895893207 hasConcept C74193536 @default.
- W2895893207 hasConcept C9417928 @default.
- W2895893207 hasConceptScore W2895893207C105795698 @default.
- W2895893207 hasConceptScore W2895893207C106430172 @default.
- W2895893207 hasConceptScore W2895893207C11413529 @default.
- W2895893207 hasConceptScore W2895893207C114614502 @default.
- W2895893207 hasConceptScore W2895893207C115961682 @default.
- W2895893207 hasConceptScore W2895893207C134306372 @default.
- W2895893207 hasConceptScore W2895893207C153180895 @default.
- W2895893207 hasConceptScore W2895893207C154945302 @default.
- W2895893207 hasConceptScore W2895893207C185429906 @default.
- W2895893207 hasConceptScore W2895893207C203504353 @default.
- W2895893207 hasConceptScore W2895893207C2777693668 @default.
- W2895893207 hasConceptScore W2895893207C31972630 @default.
- W2895893207 hasConceptScore W2895893207C33923547 @default.
- W2895893207 hasConceptScore W2895893207C40636538 @default.
- W2895893207 hasConceptScore W2895893207C41008148 @default.
- W2895893207 hasConceptScore W2895893207C71134354 @default.
- W2895893207 hasConceptScore W2895893207C74193536 @default.
- W2895893207 hasConceptScore W2895893207C9417928 @default.
- W2895893207 hasLocation W28958932071 @default.
- W2895893207 hasLocation W28958932072 @default.
- W2895893207 hasOpenAccess W2895893207 @default.
- W2895893207 hasPrimaryLocation W28958932071 @default.