Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895894734> ?p ?o ?g. }
- W2895894734 endingPage "e5765" @default.
- W2895894734 startingPage "e5765" @default.
- W2895894734 abstract "Background Multimorbidity presents an increasingly common problem in older population, and is tightly related to polypharmacy, i.e., concurrent use of multiple medications by one individual. Detecting polypharmacy from drug prescription records is not only related to multimorbidity, but can also point at incorrect use of medicines. In this work, we build models for predicting polypharmacy from drug prescription records for newly diagnosed chronic patients. We evaluate the models’ performance with a strong focus on interpretability of the results. Methods A centrally collected nationwide dataset of prescription records was used to perform electronic phenotyping of patients for the following two chronic conditions: type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD). In addition, a hospital discharge dataset was linked to the prescription records. A regularized regression model was built for 11 different experimental scenarios on two datasets, and complexity of the model was controlled with a maximum number of dimensions (MND) parameter. Performance and interpretability of the model were evaluated with AUC, AUPRC, calibration plots, and interpretation by a medical doctor. Results For the CVD model, AUC and AUPRC values of 0.900 (95% [0.898–0.901]) and 0.640 (0.635–0.645) were reached, respectively, while for the T2D model the values were 0.808 (0.803–0.812) and 0.732 (0.725–0.739). Reducing complexity of the model by 65% and 48% for CVD and T2D, resulted in 3% and 4% lower AUC, and 4% and 5% lower AUPRC values, respectively. Calibration plots for our models showed that we can achieve moderate calibration with reducing the models’ complexity without significant loss of predictive performance. Discussion In this study, we found that it is possible to use drug prescription data to build a model for polypharmacy prediction in older population. In addition, the study showed that it is possible to find a balance between good performance and interpretability of the model, and achieve acceptable calibration at the same time." @default.
- W2895894734 created "2018-10-26" @default.
- W2895894734 creator A5011041769 @default.
- W2895894734 creator A5017783286 @default.
- W2895894734 creator A5022754001 @default.
- W2895894734 creator A5025106651 @default.
- W2895894734 creator A5073579013 @default.
- W2895894734 creator A5089727775 @default.
- W2895894734 date "2018-10-12" @default.
- W2895894734 modified "2023-10-17" @default.
- W2895894734 title "Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records" @default.
- W2895894734 cites W1512261908 @default.
- W2895894734 cites W1581759681 @default.
- W2895894734 cites W1736805871 @default.
- W2895894734 cites W1966716734 @default.
- W2895894734 cites W1980607498 @default.
- W2895894734 cites W2010745568 @default.
- W2895894734 cites W2014556601 @default.
- W2895894734 cites W2017615231 @default.
- W2895894734 cites W2017975952 @default.
- W2895894734 cites W2027576789 @default.
- W2895894734 cites W2028255818 @default.
- W2895894734 cites W2044803716 @default.
- W2895894734 cites W2052892329 @default.
- W2895894734 cites W2084734925 @default.
- W2895894734 cites W2088141733 @default.
- W2895894734 cites W2097360283 @default.
- W2895894734 cites W2108336933 @default.
- W2895894734 cites W2114530688 @default.
- W2895894734 cites W2125604310 @default.
- W2895894734 cites W2129925362 @default.
- W2895894734 cites W2135931522 @default.
- W2895894734 cites W2225109326 @default.
- W2895894734 cites W2302135610 @default.
- W2895894734 cites W2340566839 @default.
- W2895894734 cites W2342816966 @default.
- W2895894734 cites W2525984666 @default.
- W2895894734 cites W2531468880 @default.
- W2895894734 cites W2610332124 @default.
- W2895894734 cites W2622629370 @default.
- W2895894734 cites W2741729024 @default.
- W2895894734 cites W2753138003 @default.
- W2895894734 cites W2761044626 @default.
- W2895894734 cites W2786221479 @default.
- W2895894734 cites W2791421807 @default.
- W2895894734 cites W4294541781 @default.
- W2895894734 doi "https://doi.org/10.7717/peerj.5765" @default.
- W2895894734 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6187991" @default.
- W2895894734 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30345175" @default.
- W2895894734 hasPublicationYear "2018" @default.
- W2895894734 type Work @default.
- W2895894734 sameAs 2895894734 @default.
- W2895894734 citedByCount "11" @default.
- W2895894734 countsByYear W28958947342019 @default.
- W2895894734 countsByYear W28958947342020 @default.
- W2895894734 countsByYear W28958947342021 @default.
- W2895894734 countsByYear W28958947342022 @default.
- W2895894734 crossrefType "journal-article" @default.
- W2895894734 hasAuthorship W2895894734A5011041769 @default.
- W2895894734 hasAuthorship W2895894734A5017783286 @default.
- W2895894734 hasAuthorship W2895894734A5022754001 @default.
- W2895894734 hasAuthorship W2895894734A5025106651 @default.
- W2895894734 hasAuthorship W2895894734A5073579013 @default.
- W2895894734 hasAuthorship W2895894734A5089727775 @default.
- W2895894734 hasBestOaLocation W28958947341 @default.
- W2895894734 hasConcept C119857082 @default.
- W2895894734 hasConcept C124101348 @default.
- W2895894734 hasConcept C126322002 @default.
- W2895894734 hasConcept C195910791 @default.
- W2895894734 hasConcept C2426938 @default.
- W2895894734 hasConcept C2781067378 @default.
- W2895894734 hasConcept C2908647359 @default.
- W2895894734 hasConcept C36434225 @default.
- W2895894734 hasConcept C41008148 @default.
- W2895894734 hasConcept C71924100 @default.
- W2895894734 hasConcept C98274493 @default.
- W2895894734 hasConcept C99454951 @default.
- W2895894734 hasConceptScore W2895894734C119857082 @default.
- W2895894734 hasConceptScore W2895894734C124101348 @default.
- W2895894734 hasConceptScore W2895894734C126322002 @default.
- W2895894734 hasConceptScore W2895894734C195910791 @default.
- W2895894734 hasConceptScore W2895894734C2426938 @default.
- W2895894734 hasConceptScore W2895894734C2781067378 @default.
- W2895894734 hasConceptScore W2895894734C2908647359 @default.
- W2895894734 hasConceptScore W2895894734C36434225 @default.
- W2895894734 hasConceptScore W2895894734C41008148 @default.
- W2895894734 hasConceptScore W2895894734C71924100 @default.
- W2895894734 hasConceptScore W2895894734C98274493 @default.
- W2895894734 hasConceptScore W2895894734C99454951 @default.
- W2895894734 hasFunder F4320322554 @default.
- W2895894734 hasLocation W28958947341 @default.
- W2895894734 hasLocation W28958947342 @default.
- W2895894734 hasLocation W28958947343 @default.
- W2895894734 hasLocation W28958947344 @default.
- W2895894734 hasLocation W28958947345 @default.
- W2895894734 hasLocation W28958947346 @default.
- W2895894734 hasOpenAccess W2895894734 @default.
- W2895894734 hasPrimaryLocation W28958947341 @default.