Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895919328> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2895919328 abstract "Predicting software fault proneness is very important as the process of fixing these faults after the release is very costly and time-consuming. In order to predict software fault proneness, many machine learning algorithms (e.g., Logistic regression, Naive Bayes, and J48) were used on several datasets, using different metrics as features. The question is what algorithm is the best under which circumstance and what metrics should be applied. Related works suggested that using change metrics leads to the highest accuracy in prediction. In addition, some algorithms perform better than others in certain circumstances. In this work, we use three machine learning algorithms (i.e., logistic regression, Naive Bayes, and J48) on three Eclipse releases (i.e., 2.0, 2.1, 3.0). The results showed that accuracy is slightly better and false positive rates are lower, when we use the reduced set of metrics compared to all change metrics set. However, the recall and the G score are better when we use the complete set of change metrics. Furthermore, J48 outperformed the other classifiers with respect to the G score for the reduced set of change metrics, as well as in almost all cases when the complete set of change metrics, static code metrics, and the combination of both were used." @default.
- W2895919328 created "2018-10-26" @default.
- W2895919328 creator A5008905681 @default.
- W2895919328 creator A5017071412 @default.
- W2895919328 creator A5053875423 @default.
- W2895919328 creator A5069779936 @default.
- W2895919328 date "2018-04-01" @default.
- W2895919328 modified "2023-09-26" @default.
- W2895919328 title "Applying Machine Learning to Predict Software Fault Proneness Using Change Metrics, Static Code Metrics, and a Combination of Them" @default.
- W2895919328 cites W2031812206 @default.
- W2895919328 cites W2037334256 @default.
- W2895919328 cites W2132887549 @default.
- W2895919328 cites W2151666086 @default.
- W2895919328 cites W2164403426 @default.
- W2895919328 doi "https://doi.org/10.1109/secon.2018.8478911" @default.
- W2895919328 hasPublicationYear "2018" @default.
- W2895919328 type Work @default.
- W2895919328 sameAs 2895919328 @default.
- W2895919328 citedByCount "12" @default.
- W2895919328 countsByYear W28959193282019 @default.
- W2895919328 countsByYear W28959193282020 @default.
- W2895919328 countsByYear W28959193282021 @default.
- W2895919328 countsByYear W28959193282022 @default.
- W2895919328 crossrefType "proceedings-article" @default.
- W2895919328 hasAuthorship W2895919328A5008905681 @default.
- W2895919328 hasAuthorship W2895919328A5017071412 @default.
- W2895919328 hasAuthorship W2895919328A5053875423 @default.
- W2895919328 hasAuthorship W2895919328A5069779936 @default.
- W2895919328 hasConcept C11413529 @default.
- W2895919328 hasConcept C119857082 @default.
- W2895919328 hasConcept C12267149 @default.
- W2895919328 hasConcept C124101348 @default.
- W2895919328 hasConcept C127313418 @default.
- W2895919328 hasConcept C151956035 @default.
- W2895919328 hasConcept C154945302 @default.
- W2895919328 hasConcept C165205528 @default.
- W2895919328 hasConcept C175551986 @default.
- W2895919328 hasConcept C177264268 @default.
- W2895919328 hasConcept C199360897 @default.
- W2895919328 hasConcept C41008148 @default.
- W2895919328 hasConcept C52001869 @default.
- W2895919328 hasConcept C52003472 @default.
- W2895919328 hasConcept C81669768 @default.
- W2895919328 hasConceptScore W2895919328C11413529 @default.
- W2895919328 hasConceptScore W2895919328C119857082 @default.
- W2895919328 hasConceptScore W2895919328C12267149 @default.
- W2895919328 hasConceptScore W2895919328C124101348 @default.
- W2895919328 hasConceptScore W2895919328C127313418 @default.
- W2895919328 hasConceptScore W2895919328C151956035 @default.
- W2895919328 hasConceptScore W2895919328C154945302 @default.
- W2895919328 hasConceptScore W2895919328C165205528 @default.
- W2895919328 hasConceptScore W2895919328C175551986 @default.
- W2895919328 hasConceptScore W2895919328C177264268 @default.
- W2895919328 hasConceptScore W2895919328C199360897 @default.
- W2895919328 hasConceptScore W2895919328C41008148 @default.
- W2895919328 hasConceptScore W2895919328C52001869 @default.
- W2895919328 hasConceptScore W2895919328C52003472 @default.
- W2895919328 hasConceptScore W2895919328C81669768 @default.
- W2895919328 hasLocation W28959193281 @default.
- W2895919328 hasOpenAccess W2895919328 @default.
- W2895919328 hasPrimaryLocation W28959193281 @default.
- W2895919328 hasRelatedWork W2963351125 @default.
- W2895919328 hasRelatedWork W2973775341 @default.
- W2895919328 hasRelatedWork W3115542858 @default.
- W2895919328 hasRelatedWork W3127653662 @default.
- W2895919328 hasRelatedWork W3137532542 @default.
- W2895919328 hasRelatedWork W3176653196 @default.
- W2895919328 hasRelatedWork W4312415035 @default.
- W2895919328 hasRelatedWork W4327649842 @default.
- W2895919328 hasRelatedWork W4381956280 @default.
- W2895919328 hasRelatedWork W4386462655 @default.
- W2895919328 isParatext "false" @default.
- W2895919328 isRetracted "false" @default.
- W2895919328 magId "2895919328" @default.
- W2895919328 workType "article" @default.