Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895925119> ?p ?o ?g. }
- W2895925119 endingPage "1029" @default.
- W2895925119 startingPage "1014" @default.
- W2895925119 abstract "Metabolic and mechanical cues control stem cell fate in vivo and in vitro. There is a synergistic intertwining of metabolism, stem cell fate, differentiation, and reprogramming. The mechanical properties of embryonic cells are crucial for their precise development. Recent knowledge of the mechanical properties at different cell stages of embryonic development has brought to light the role of mechanosensing in cell fate decision. In vitro, biophysical cues are key modulators in ESC fate and cellular reprogramming. The connection between metabolic and mechanotransduction signaling pathways is emerging as key in determining cell fate but remains largely unexplored. Evidence suggests that YAP, MAPK, and PI3K signaling pathways act as molecular crosstalk between metabolism and mechanotransduction. The ability to shift between metabolic states and to tightly regulate cellular mechanical properties have been described as crucial events in the achievement of correct embryonic development. Indeed, metabolic and mechanical manipulations in vitro have led to the discovery of new methods to control cell fate. As these two modulators are usually studied separately, in this review article, we describe how cellular mechanics and metabolic characteristics regulate embryonic development in vivo and describe the role of these cues in the regulation of pluripotency and differentiation in vitro. We also pinpoint possible connections between metabolism and mechanotransduction, highlighting recent findings in the Yes-associated protein, phosphoinositide 3-kinase, and AMP-activated protein kinase signaling pathways, and how they may be relevant in modulating cell fate in other contexts. The ability to shift between metabolic states and to tightly regulate cellular mechanical properties have been described as crucial events in the achievement of correct embryonic development. Indeed, metabolic and mechanical manipulations in vitro have led to the discovery of new methods to control cell fate. As these two modulators are usually studied separately, in this review article, we describe how cellular mechanics and metabolic characteristics regulate embryonic development in vivo and describe the role of these cues in the regulation of pluripotency and differentiation in vitro. We also pinpoint possible connections between metabolism and mechanotransduction, highlighting recent findings in the Yes-associated protein, phosphoinositide 3-kinase, and AMP-activated protein kinase signaling pathways, and how they may be relevant in modulating cell fate in other contexts. pathways responsible for the production of macromolecules, such as nucleotides, amino acids, and lipids. Anabolic pathways require energy from ATP or nicotinamide adenine dinucleotide (NADH). an in vitro 3D combination of ESCs and trophoblast stem cells that resembles the transcription profile and the structure of the blastocyst. process in which blastomeres flatten against each other, their cell-cell contact is maximized, and they can no longer be distinguished morphologically. This takes place before the morula stage of embryo development. pathways that break down molecules into smaller units to produce energy or building blocks. an in vitro multicellular model of gastrulation. the rate at which molecules progress through glycolysis. combination of anabolic and catabolic mechanisms that occur inside a cell. ESCs capable of unlimited self-renewal capacity and able to differentiate into all three germ layers in vitro and to form teratomas and chimeras in vivo. The earliest stage of pluripotency. an in vitro multicellular structure that contains many cell types resembling a specific adult organ. cells that can differentiate in vitro as well as in vivo, giving rise to all three embryonic lineages and germ cells, as well as being capable of self-renewal. ESCs that are not capable of forming chimeras in vivo, although they are still able to form teratomas and differentiate into all three germ layers in vitro. A later stage of pluripotency. cells that can proliferate indefinitely, while maintaining pluripotency. reported in Pascal (Pa) units, it is the ability of a material to resist to a force. It is formally defined as Young’s elastic modulus (E) and results from the relationship between the force applied to a defined area (stress) and the resultant deformation of the material (strain). A stiff matrix is more resistant to deformation than a soft matrix. a multicellular type of rare tumor used as an in vivo pluripotency assay, the only one that can be performed with human cells. The teratoma assay assesses the ability of cells to spontaneously differentiate into tissues from the three germ layers when injected into immunocompromised mice. If they are pluripotent cells should always form teratomas." @default.
- W2895925119 created "2018-10-26" @default.
- W2895925119 creator A5003835601 @default.
- W2895925119 creator A5009068686 @default.
- W2895925119 creator A5018705368 @default.
- W2895925119 creator A5033498068 @default.
- W2895925119 date "2018-12-01" @default.
- W2895925119 modified "2023-10-18" @default.
- W2895925119 title "Metabolic and Mechanical Cues Regulating Pluripotent Stem Cell Fate" @default.
- W2895925119 cites W1161077048 @default.
- W2895925119 cites W1519287420 @default.
- W2895925119 cites W1537559146 @default.
- W2895925119 cites W1547854630 @default.
- W2895925119 cites W1580421830 @default.
- W2895925119 cites W1775995243 @default.
- W2895925119 cites W1779654448 @default.
- W2895925119 cites W1787310541 @default.
- W2895925119 cites W1839227508 @default.
- W2895925119 cites W1874303456 @default.
- W2895925119 cites W1963974588 @default.
- W2895925119 cites W1973113661 @default.
- W2895925119 cites W1978764742 @default.
- W2895925119 cites W1982866029 @default.
- W2895925119 cites W1984339780 @default.
- W2895925119 cites W1984828462 @default.
- W2895925119 cites W1987055178 @default.
- W2895925119 cites W1990144440 @default.
- W2895925119 cites W1995833967 @default.
- W2895925119 cites W1998317358 @default.
- W2895925119 cites W1999661963 @default.
- W2895925119 cites W2003315801 @default.
- W2895925119 cites W2008558812 @default.
- W2895925119 cites W2009519731 @default.
- W2895925119 cites W2019019085 @default.
- W2895925119 cites W2020511240 @default.
- W2895925119 cites W2025192477 @default.
- W2895925119 cites W2025636927 @default.
- W2895925119 cites W2026628433 @default.
- W2895925119 cites W2027635031 @default.
- W2895925119 cites W2029600421 @default.
- W2895925119 cites W2031354391 @default.
- W2895925119 cites W2032966450 @default.
- W2895925119 cites W2037975888 @default.
- W2895925119 cites W2038573562 @default.
- W2895925119 cites W2043313532 @default.
- W2895925119 cites W2044120077 @default.
- W2895925119 cites W2045899482 @default.
- W2895925119 cites W2051006144 @default.
- W2895925119 cites W2051070943 @default.
- W2895925119 cites W2052766715 @default.
- W2895925119 cites W2055312969 @default.
- W2895925119 cites W2057069431 @default.
- W2895925119 cites W2057159461 @default.
- W2895925119 cites W2059223857 @default.
- W2895925119 cites W2066193715 @default.
- W2895925119 cites W2067214401 @default.
- W2895925119 cites W2068294198 @default.
- W2895925119 cites W2070732456 @default.
- W2895925119 cites W2072159974 @default.
- W2895925119 cites W2072844557 @default.
- W2895925119 cites W2075682647 @default.
- W2895925119 cites W2076812266 @default.
- W2895925119 cites W2079465654 @default.
- W2895925119 cites W2086943348 @default.
- W2895925119 cites W2087814592 @default.
- W2895925119 cites W2090260381 @default.
- W2895925119 cites W2092246832 @default.
- W2895925119 cites W2093021491 @default.
- W2895925119 cites W2095987251 @default.
- W2895925119 cites W2096579994 @default.
- W2895925119 cites W2099603791 @default.
- W2895925119 cites W2102298903 @default.
- W2895925119 cites W2107024719 @default.
- W2895925119 cites W2120199266 @default.
- W2895925119 cites W2125724189 @default.
- W2895925119 cites W2125987139 @default.
- W2895925119 cites W2126326508 @default.
- W2895925119 cites W2131627130 @default.
- W2895925119 cites W2134208433 @default.
- W2895925119 cites W2138977668 @default.
- W2895925119 cites W2140125749 @default.
- W2895925119 cites W2140606720 @default.
- W2895925119 cites W2142074755 @default.
- W2895925119 cites W2142482111 @default.
- W2895925119 cites W2143076230 @default.
- W2895925119 cites W2144575277 @default.
- W2895925119 cites W2145231066 @default.
- W2895925119 cites W2157533783 @default.
- W2895925119 cites W2159038842 @default.
- W2895925119 cites W2159236216 @default.
- W2895925119 cites W2161491446 @default.
- W2895925119 cites W2168636113 @default.
- W2895925119 cites W2169166682 @default.
- W2895925119 cites W2169755701 @default.
- W2895925119 cites W2171813756 @default.
- W2895925119 cites W2180144971 @default.
- W2895925119 cites W2186508575 @default.
- W2895925119 cites W2205463375 @default.