Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895935953> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2895935953 abstract "In highway driving scenarios it is important for highly automated driving systems to be able to recognize and predict the intended maneuvers of other drivers in order to make robust and informed decisions. Many methods utilize the current kinematics of vehicles to make these predictions, but it is possible to examine the relations between vehicles as well to gain more information about the traffic scene and make more accurate predictions. The work presented in this paper proposes a novel method of predicting lane change maneuvers in highway scenarios using deep learning and a generic visual representation of the traffic scene. Experimental results suggest that by operating on the visual representation, the spacial relations between arbitrary vehicles can be captured by our method and used for more informed predictions without the need for explicit dynamic or driver interaction models. The proposed method is evaluated on highway driving scenarios using the Interstate-80 dataset and compared to a kinematics based prediction model, with results showing that the proposed method produces more robust predictions across the prediction horizon than the comparison model." @default.
- W2895935953 created "2018-10-26" @default.
- W2895935953 creator A5009175794 @default.
- W2895935953 creator A5038453402 @default.
- W2895935953 creator A5068942914 @default.
- W2895935953 date "2018-06-01" @default.
- W2895935953 modified "2023-09-25" @default.
- W2895935953 title "Learning to Predict Lane Changes in Highway Scenarios Using Dynamic Filters On a Generic Traffic Representation" @default.
- W2895935953 cites W1899908593 @default.
- W2895935953 cites W2012849708 @default.
- W2895935953 cites W2016531398 @default.
- W2895935953 cites W2055556996 @default.
- W2895935953 cites W2080803848 @default.
- W2895935953 cites W2102593338 @default.
- W2895935953 cites W2103880099 @default.
- W2895935953 cites W2134239466 @default.
- W2895935953 cites W2424778531 @default.
- W2895935953 cites W2580495915 @default.
- W2895935953 cites W2741066535 @default.
- W2895935953 cites W2741379897 @default.
- W2895935953 doi "https://doi.org/10.1109/ivs.2018.8500426" @default.
- W2895935953 hasPublicationYear "2018" @default.
- W2895935953 type Work @default.
- W2895935953 sameAs 2895935953 @default.
- W2895935953 citedByCount "7" @default.
- W2895935953 countsByYear W28959359532019 @default.
- W2895935953 countsByYear W28959359532020 @default.
- W2895935953 countsByYear W28959359532021 @default.
- W2895935953 countsByYear W28959359532022 @default.
- W2895935953 countsByYear W28959359532023 @default.
- W2895935953 crossrefType "proceedings-article" @default.
- W2895935953 hasAuthorship W2895935953A5009175794 @default.
- W2895935953 hasAuthorship W2895935953A5038453402 @default.
- W2895935953 hasAuthorship W2895935953A5068942914 @default.
- W2895935953 hasConcept C119857082 @default.
- W2895935953 hasConcept C121332964 @default.
- W2895935953 hasConcept C127413603 @default.
- W2895935953 hasConcept C154945302 @default.
- W2895935953 hasConcept C171146098 @default.
- W2895935953 hasConcept C17744445 @default.
- W2895935953 hasConcept C18762648 @default.
- W2895935953 hasConcept C199539241 @default.
- W2895935953 hasConcept C2776359362 @default.
- W2895935953 hasConcept C39920418 @default.
- W2895935953 hasConcept C41008148 @default.
- W2895935953 hasConcept C74650414 @default.
- W2895935953 hasConcept C78519656 @default.
- W2895935953 hasConcept C79487989 @default.
- W2895935953 hasConcept C87833898 @default.
- W2895935953 hasConcept C94625758 @default.
- W2895935953 hasConceptScore W2895935953C119857082 @default.
- W2895935953 hasConceptScore W2895935953C121332964 @default.
- W2895935953 hasConceptScore W2895935953C127413603 @default.
- W2895935953 hasConceptScore W2895935953C154945302 @default.
- W2895935953 hasConceptScore W2895935953C171146098 @default.
- W2895935953 hasConceptScore W2895935953C17744445 @default.
- W2895935953 hasConceptScore W2895935953C18762648 @default.
- W2895935953 hasConceptScore W2895935953C199539241 @default.
- W2895935953 hasConceptScore W2895935953C2776359362 @default.
- W2895935953 hasConceptScore W2895935953C39920418 @default.
- W2895935953 hasConceptScore W2895935953C41008148 @default.
- W2895935953 hasConceptScore W2895935953C74650414 @default.
- W2895935953 hasConceptScore W2895935953C78519656 @default.
- W2895935953 hasConceptScore W2895935953C79487989 @default.
- W2895935953 hasConceptScore W2895935953C87833898 @default.
- W2895935953 hasConceptScore W2895935953C94625758 @default.
- W2895935953 hasLocation W28959359531 @default.
- W2895935953 hasOpenAccess W2895935953 @default.
- W2895935953 hasPrimaryLocation W28959359531 @default.
- W2895935953 hasRelatedWork W2961085424 @default.
- W2895935953 hasRelatedWork W3046775127 @default.
- W2895935953 hasRelatedWork W3170094116 @default.
- W2895935953 hasRelatedWork W4205958290 @default.
- W2895935953 hasRelatedWork W4285260836 @default.
- W2895935953 hasRelatedWork W4286629047 @default.
- W2895935953 hasRelatedWork W4306321456 @default.
- W2895935953 hasRelatedWork W4306674287 @default.
- W2895935953 hasRelatedWork W4382499579 @default.
- W2895935953 hasRelatedWork W4224009465 @default.
- W2895935953 isParatext "false" @default.
- W2895935953 isRetracted "false" @default.
- W2895935953 magId "2895935953" @default.
- W2895935953 workType "article" @default.