Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895945500> ?p ?o ?g. }
- W2895945500 endingPage "5642" @default.
- W2895945500 startingPage "5631" @default.
- W2895945500 abstract "Monte Carlo (MC) dose calculation is generally superior to analytical dose calculation (ADC) used in commercial TPS to model the dose distribution especially for heterogeneous sites, such as lung and head/neck patients. The purpose of this study was to provide a validated, fast, and open-source MC code, MCsquare, to assess the impact of approximations in ADC on clinical pencil beam scanning (PBS) plans covering various sites.First, MCsquare was validated using tissue-mimicking IROC lung phantom measurements as well as benchmarked with the general purpose Monte Carlo TOPAS for patient dose calculation. Then a comparative analysis between MCsquare and ADC was performed for a total of 50 patients with 10 patients per site (including liver, pelvis, brain, head-and-neck, and lung). Differences among TOPAS, MCsquare, and ADC were evaluated using four dosimetric indices based on the dose-volume histogram (target Dmean, D95, homogeneity index, V95), a 3D gamma index analysis (using 3%/3 mm criteria), and estimations of tumor control probability (TCP).Comparison between MCsquare and TOPAS showed less than 1.8% difference for all of the dosimetric indices/TCP values and resulted in a 3D gamma index passing rate for voxels within the target in excess of 99%. When comparing ADC and MCsquare, the variances of all the indices were found to increase as the degree of tissue heterogeneity increased. In the case of lung, the D95s for ADC were found to differ by as much as 6.5% from the corresponding MCsquare statistic. The median gamma index passing rate for voxels within the target volume decreased from 99.3% for liver to 75.8% for lung. Resulting TCP differences can be large for lung (≤10.5%) and head-and-neck (≤6.2%), while smaller for brain, pelvis and liver (≤1.5%).Given the differences found in the analysis, accurate dose calculation algorithms such as Monte Carlo simulations are needed for proton therapy, especially for disease sites with high heterogeneity, such as head-and-neck and lung. The establishment of MCsquare can facilitate patient plan reviews at any institution and can potentially provide unbiased comparison in clinical trials given its accuracy, speed and open-source availability." @default.
- W2895945500 created "2018-10-26" @default.
- W2895945500 creator A5005298316 @default.
- W2895945500 creator A5008019088 @default.
- W2895945500 creator A5036617430 @default.
- W2895945500 creator A5050270794 @default.
- W2895945500 creator A5056488983 @default.
- W2895945500 creator A5057920262 @default.
- W2895945500 creator A5064825362 @default.
- W2895945500 creator A5067543710 @default.
- W2895945500 creator A5073785639 @default.
- W2895945500 creator A5076880704 @default.
- W2895945500 creator A5079985074 @default.
- W2895945500 creator A5085485551 @default.
- W2895945500 date "2018-10-26" @default.
- W2895945500 modified "2023-10-16" @default.
- W2895945500 title "Validation and application of a fast Monte Carlo algorithm for assessing the clinical impact of approximations in analytical dose calculations for pencil beam scanning proton therapy" @default.
- W2895945500 cites W1488102270 @default.
- W2895945500 cites W1963650237 @default.
- W2895945500 cites W1965609041 @default.
- W2895945500 cites W1967121735 @default.
- W2895945500 cites W1986363917 @default.
- W2895945500 cites W1992217639 @default.
- W2895945500 cites W1994534668 @default.
- W2895945500 cites W1996278026 @default.
- W2895945500 cites W1999189079 @default.
- W2895945500 cites W2000076883 @default.
- W2895945500 cites W2000858817 @default.
- W2895945500 cites W2001104303 @default.
- W2895945500 cites W2002946815 @default.
- W2895945500 cites W2005348841 @default.
- W2895945500 cites W2007589479 @default.
- W2895945500 cites W2015290878 @default.
- W2895945500 cites W2022985124 @default.
- W2895945500 cites W2025109572 @default.
- W2895945500 cites W2030544564 @default.
- W2895945500 cites W2038196526 @default.
- W2895945500 cites W2042187174 @default.
- W2895945500 cites W2046217482 @default.
- W2895945500 cites W2047762563 @default.
- W2895945500 cites W2048692002 @default.
- W2895945500 cites W2048731429 @default.
- W2895945500 cites W2061664500 @default.
- W2895945500 cites W2066357567 @default.
- W2895945500 cites W2068878119 @default.
- W2895945500 cites W2071632269 @default.
- W2895945500 cites W2073401440 @default.
- W2895945500 cites W2076139133 @default.
- W2895945500 cites W2082621661 @default.
- W2895945500 cites W2082700018 @default.
- W2895945500 cites W2085188303 @default.
- W2895945500 cites W2088348443 @default.
- W2895945500 cites W2093338140 @default.
- W2895945500 cites W2093782456 @default.
- W2895945500 cites W2128158076 @default.
- W2895945500 cites W2133531250 @default.
- W2895945500 cites W2138884296 @default.
- W2895945500 cites W2145700610 @default.
- W2895945500 cites W2298441161 @default.
- W2895945500 cites W2345933175 @default.
- W2895945500 cites W2529067946 @default.
- W2895945500 cites W2587479276 @default.
- W2895945500 cites W2613679655 @default.
- W2895945500 cites W2625610786 @default.
- W2895945500 cites W2740406916 @default.
- W2895945500 cites W2768238092 @default.
- W2895945500 cites W2787348589 @default.
- W2895945500 cites W2885460638 @default.
- W2895945500 cites W3104476292 @default.
- W2895945500 cites W3124937987 @default.
- W2895945500 doi "https://doi.org/10.1002/mp.13231" @default.
- W2895945500 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30295950" @default.
- W2895945500 hasPublicationYear "2018" @default.
- W2895945500 type Work @default.
- W2895945500 sameAs 2895945500 @default.
- W2895945500 citedByCount "33" @default.
- W2895945500 countsByYear W28959455002019 @default.
- W2895945500 countsByYear W28959455002020 @default.
- W2895945500 countsByYear W28959455002021 @default.
- W2895945500 countsByYear W28959455002022 @default.
- W2895945500 countsByYear W28959455002023 @default.
- W2895945500 crossrefType "journal-article" @default.
- W2895945500 hasAuthorship W2895945500A5005298316 @default.
- W2895945500 hasAuthorship W2895945500A5008019088 @default.
- W2895945500 hasAuthorship W2895945500A5036617430 @default.
- W2895945500 hasAuthorship W2895945500A5050270794 @default.
- W2895945500 hasAuthorship W2895945500A5056488983 @default.
- W2895945500 hasAuthorship W2895945500A5057920262 @default.
- W2895945500 hasAuthorship W2895945500A5064825362 @default.
- W2895945500 hasAuthorship W2895945500A5067543710 @default.
- W2895945500 hasAuthorship W2895945500A5073785639 @default.
- W2895945500 hasAuthorship W2895945500A5076880704 @default.
- W2895945500 hasAuthorship W2895945500A5079985074 @default.
- W2895945500 hasAuthorship W2895945500A5085485551 @default.
- W2895945500 hasConcept C104293457 @default.
- W2895945500 hasConcept C105795698 @default.
- W2895945500 hasConcept C11413529 @default.
- W2895945500 hasConcept C126838900 @default.