Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895948315> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2895948315 abstract "Abstract In this paper, we introduce a methodology for the automated construction of a statistical forecast for gas production from coalbed methane wells. The approach uses decline curves to extrapolate production from individual wells and provides a statistical range of outcomes based on a regression model, fit to a cluster of wells similar to the one being forecasted. The purpose of the method is to provide a quick forecast that uses only directly measured data that are subject to a minimal additional interpretation and modelling. In the paper, we describe application of the workflow to forecast production from previously produced and newly drilled horizontal coal-gas wells in the Bowen basin and compare predictions to the actually observed production. First of all, we benchmarked different types of decline curves against numerical simulation to evaluate the applicability of decline curves for long term predictions. We checked Arps's and power-law and exponentiated exponential family of type curves to predict production for up to 30 years. When compared to the simulation results, Arps's curves provided the best match. Then, we introduced a type curve fitting workflow and compare prediction against observed production for each type of decline curves at prediction period from three months to five years. After that, we evaluated different regression models (linear, kernel density estimate, agglomerative clustering, Bayesian combination of linear regression and clustering, support vector and random forest) to predict the peak rate and provide a way to extract the decline statistics for similar wells. The combination of type curves and a regression model allowed us to construct a distribution of decline curves for each well and extract curves corresponding to the requested quantiles. We applied this statistical approach to production of 140 wells and compared the predicted results with the actual production. In the end, we discuss how this workflow can be applied to forecast production from the new infill wells. The only essential difference is that the peak rate needs to be adjusted to take the depletion into account. That can be done by multiplying the peak rate estimate by the ratio of inflow rate at the time of the historical peak and the current time. The inflow ratio can be estimated by comparing the average reservoir pressure at both moments in time. We used this workflow as a part of the screening process to select infill well candidates. In the paper, we compare the results of the prediction with the actual production from 15 infill wells drilled within two years form the time of the forecast." @default.
- W2895948315 created "2018-10-26" @default.
- W2895948315 creator A5031444518 @default.
- W2895948315 creator A5048447197 @default.
- W2895948315 creator A5058092766 @default.
- W2895948315 creator A5072825482 @default.
- W2895948315 date "2018-10-23" @default.
- W2895948315 modified "2023-10-16" @default.
- W2895948315 title "Statistical Decline Curve Analysis for Automated Forecasting of Production from Coalbed Methane Wells" @default.
- W2895948315 cites W1964357740 @default.
- W2895948315 cites W1970037416 @default.
- W2895948315 cites W1976219606 @default.
- W2895948315 cites W1986630576 @default.
- W2895948315 cites W1990332990 @default.
- W2895948315 cites W2000359198 @default.
- W2895948315 cites W2009827615 @default.
- W2895948315 cites W2033291942 @default.
- W2895948315 cites W2038960401 @default.
- W2895948315 cites W2069970580 @default.
- W2895948315 cites W2100296894 @default.
- W2895948315 cites W2101234009 @default.
- W2895948315 cites W2112105596 @default.
- W2895948315 cites W2592474151 @default.
- W2895948315 cites W2768006310 @default.
- W2895948315 cites W2911964244 @default.
- W2895948315 cites W3105621768 @default.
- W2895948315 cites W646332266 @default.
- W2895948315 cites W2088503314 @default.
- W2895948315 doi "https://doi.org/10.2118/191985-ms" @default.
- W2895948315 hasPublicationYear "2018" @default.
- W2895948315 type Work @default.
- W2895948315 sameAs 2895948315 @default.
- W2895948315 citedByCount "1" @default.
- W2895948315 countsByYear W28959483152019 @default.
- W2895948315 crossrefType "proceedings-article" @default.
- W2895948315 hasAuthorship W2895948315A5031444518 @default.
- W2895948315 hasAuthorship W2895948315A5048447197 @default.
- W2895948315 hasAuthorship W2895948315A5058092766 @default.
- W2895948315 hasAuthorship W2895948315A5072825482 @default.
- W2895948315 hasConcept C105795698 @default.
- W2895948315 hasConcept C108615695 @default.
- W2895948315 hasConcept C124101348 @default.
- W2895948315 hasConcept C127413603 @default.
- W2895948315 hasConcept C139719470 @default.
- W2895948315 hasConcept C149782125 @default.
- W2895948315 hasConcept C162324750 @default.
- W2895948315 hasConcept C2776469828 @default.
- W2895948315 hasConcept C2778348673 @default.
- W2895948315 hasConcept C33923547 @default.
- W2895948315 hasConcept C41008148 @default.
- W2895948315 hasConcept C518851703 @default.
- W2895948315 hasConcept C548081761 @default.
- W2895948315 hasConcept C73555534 @default.
- W2895948315 hasConcept C83546350 @default.
- W2895948315 hasConceptScore W2895948315C105795698 @default.
- W2895948315 hasConceptScore W2895948315C108615695 @default.
- W2895948315 hasConceptScore W2895948315C124101348 @default.
- W2895948315 hasConceptScore W2895948315C127413603 @default.
- W2895948315 hasConceptScore W2895948315C139719470 @default.
- W2895948315 hasConceptScore W2895948315C149782125 @default.
- W2895948315 hasConceptScore W2895948315C162324750 @default.
- W2895948315 hasConceptScore W2895948315C2776469828 @default.
- W2895948315 hasConceptScore W2895948315C2778348673 @default.
- W2895948315 hasConceptScore W2895948315C33923547 @default.
- W2895948315 hasConceptScore W2895948315C41008148 @default.
- W2895948315 hasConceptScore W2895948315C518851703 @default.
- W2895948315 hasConceptScore W2895948315C548081761 @default.
- W2895948315 hasConceptScore W2895948315C73555534 @default.
- W2895948315 hasConceptScore W2895948315C83546350 @default.
- W2895948315 hasLocation W28959483151 @default.
- W2895948315 hasOpenAccess W2895948315 @default.
- W2895948315 hasPrimaryLocation W28959483151 @default.
- W2895948315 hasRelatedWork W1522565396 @default.
- W2895948315 hasRelatedWork W1965874904 @default.
- W2895948315 hasRelatedWork W205702776 @default.
- W2895948315 hasRelatedWork W2353852592 @default.
- W2895948315 hasRelatedWork W2380998760 @default.
- W2895948315 hasRelatedWork W2997055501 @default.
- W2895948315 hasRelatedWork W4249419144 @default.
- W2895948315 hasRelatedWork W50633494 @default.
- W2895948315 hasRelatedWork W583826391 @default.
- W2895948315 hasRelatedWork W2104798029 @default.
- W2895948315 isParatext "false" @default.
- W2895948315 isRetracted "false" @default.
- W2895948315 magId "2895948315" @default.
- W2895948315 workType "article" @default.