Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895953733> ?p ?o ?g. }
- W2895953733 endingPage "83" @default.
- W2895953733 startingPage "72" @default.
- W2895953733 abstract "Absolute principal component score/multiple linear regression (APCS/MLR) and positive matrix factorization (PMF) were applied to a dataset consisting of 10 heavy metals in 300 surface soils samples. Robust geostatistics were used to delineate and compare the factors derived from these two receptor models. Both APCS/MLR and PMF afforded three similar source factors with comparable contributions, but APCS/MLR had some negative and unidentified contributions; thus, PMF, with its optimal non-negativity results, was adopted for source apportionment. Experimental variograms for each factor from two receptor models were built using classical Matheron's and three robust estimators. The best association of experimental variograms fitted to theoretical models differed between the corresponding APCS and PMF-factors. However, kriged interpolation indicated that the corresponding APCS and PMF-factor showed similar spatial variability. Based on PMF and robust geostatistics, three sources of 10 heavy metals in Guangrao were determined. As, Co, Cr, Cu, Mn, Ni, Zn, and partially Hg, Pb, Cd originated from natural source. The factor grouping these heavy metals showed consistent distribution with parent material map. 43.1% of Hg and 13.2% of Pb were related to atmosphere deposition of human inputs, with high values of their association patterns being located around urban areas. 29.6% concentration of Cd was associated with agricultural practice, and the hotspot coincided with the spatial distribution of vegetable-producing soils. Overall, natural source, atmosphere deposition of human emissions, and agricultural practices, explained 81.1%, 7.3%, and 11.6% of the total of 10 heavy metals concentrations, respectively. Receptor models coupled with robust geostatistics could successfully estimate the source apportionment of heavy metals in soils." @default.
- W2895953733 created "2018-10-26" @default.
- W2895953733 creator A5064103547 @default.
- W2895953733 date "2019-01-01" @default.
- W2895953733 modified "2023-10-18" @default.
- W2895953733 title "Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils" @default.
- W2895953733 cites W1967565406 @default.
- W2895953733 cites W1967937233 @default.
- W2895953733 cites W1968413583 @default.
- W2895953733 cites W1970553013 @default.
- W2895953733 cites W1970707119 @default.
- W2895953733 cites W1971546248 @default.
- W2895953733 cites W1982127556 @default.
- W2895953733 cites W1983118281 @default.
- W2895953733 cites W1985716087 @default.
- W2895953733 cites W1987100352 @default.
- W2895953733 cites W1993057794 @default.
- W2895953733 cites W1996348215 @default.
- W2895953733 cites W1999581662 @default.
- W2895953733 cites W2007187972 @default.
- W2895953733 cites W2020548731 @default.
- W2895953733 cites W2021977492 @default.
- W2895953733 cites W2024697317 @default.
- W2895953733 cites W2024766984 @default.
- W2895953733 cites W2025637561 @default.
- W2895953733 cites W2026696135 @default.
- W2895953733 cites W2036281533 @default.
- W2895953733 cites W2037570227 @default.
- W2895953733 cites W2042574933 @default.
- W2895953733 cites W2053085157 @default.
- W2895953733 cites W2059027786 @default.
- W2895953733 cites W2059745395 @default.
- W2895953733 cites W2061745389 @default.
- W2895953733 cites W2063853566 @default.
- W2895953733 cites W2069856662 @default.
- W2895953733 cites W2073799193 @default.
- W2895953733 cites W2076352846 @default.
- W2895953733 cites W2076435825 @default.
- W2895953733 cites W2077750106 @default.
- W2895953733 cites W2081300775 @default.
- W2895953733 cites W2085936845 @default.
- W2895953733 cites W2089801470 @default.
- W2895953733 cites W2089815321 @default.
- W2895953733 cites W2091575974 @default.
- W2895953733 cites W2103826408 @default.
- W2895953733 cites W2104193490 @default.
- W2895953733 cites W2107379993 @default.
- W2895953733 cites W2113769366 @default.
- W2895953733 cites W2122988492 @default.
- W2895953733 cites W2126479954 @default.
- W2895953733 cites W2149961247 @default.
- W2895953733 cites W2157262115 @default.
- W2895953733 cites W2175447978 @default.
- W2895953733 cites W2188893885 @default.
- W2895953733 cites W2233495218 @default.
- W2895953733 cites W2313620662 @default.
- W2895953733 cites W2324528627 @default.
- W2895953733 cites W2332480623 @default.
- W2895953733 cites W2340931136 @default.
- W2895953733 cites W2549618048 @default.
- W2895953733 cites W2559967234 @default.
- W2895953733 cites W2567659538 @default.
- W2895953733 cites W2601418425 @default.
- W2895953733 cites W2602874887 @default.
- W2895953733 cites W2754003813 @default.
- W2895953733 cites W2804887513 @default.
- W2895953733 cites W323767824 @default.
- W2895953733 cites W4229494142 @default.
- W2895953733 cites W963453518 @default.
- W2895953733 doi "https://doi.org/10.1016/j.envpol.2018.09.147" @default.
- W2895953733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30321714" @default.
- W2895953733 hasPublicationYear "2019" @default.
- W2895953733 type Work @default.
- W2895953733 sameAs 2895953733 @default.
- W2895953733 citedByCount "184" @default.
- W2895953733 countsByYear W28959537332019 @default.
- W2895953733 countsByYear W28959537332020 @default.
- W2895953733 countsByYear W28959537332021 @default.
- W2895953733 countsByYear W28959537332022 @default.
- W2895953733 countsByYear W28959537332023 @default.
- W2895953733 crossrefType "journal-article" @default.
- W2895953733 hasAuthorship W2895953733A5064103547 @default.
- W2895953733 hasConcept C105795698 @default.
- W2895953733 hasConcept C107872376 @default.
- W2895953733 hasConcept C125572338 @default.
- W2895953733 hasConcept C159390177 @default.
- W2895953733 hasConcept C159750122 @default.
- W2895953733 hasConcept C161584116 @default.
- W2895953733 hasConcept C17744445 @default.
- W2895953733 hasConcept C185592680 @default.
- W2895953733 hasConcept C199539241 @default.
- W2895953733 hasConcept C2778337684 @default.
- W2895953733 hasConcept C33923547 @default.
- W2895953733 hasConcept C39432304 @default.
- W2895953733 hasConcept C94747663 @default.
- W2895953733 hasConceptScore W2895953733C105795698 @default.
- W2895953733 hasConceptScore W2895953733C107872376 @default.
- W2895953733 hasConceptScore W2895953733C125572338 @default.