Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895961568> ?p ?o ?g. }
- W2895961568 endingPage "e0205855" @default.
- W2895961568 startingPage "e0205855" @default.
- W2895961568 abstract "Background A primary variant of social media, online support groups (OSG) extend beyond the standard definition to incorporate a dimension of advice, support and guidance for patients. OSG are complementary, yet significant adjunct to patient journeys. Machine learning and natural language processing techniques can be applied to these large volumes of unstructured text discussions accumulated in OSG for intelligent extraction of patient-reported demographics, behaviours, decisions, treatment, side effects and expressions of emotions. New insights from the fusion and synthesis of such diverse patient-reported information, as expressed throughout the patient journey from diagnosis to treatment and recovery, can contribute towards informed decision-making on personalized healthcare delivery and the development of healthcare policy guidelines. Methods and findings We have designed and developed an artificial intelligence based analytics framework using machine learning and natural language processing techniques for intelligent analysis and automated aggregation of patient information and interaction trajectories in online support groups. Alongside the social interactions aspect, patient behaviours, decisions, demographics, clinical factors, emotions, as subsequently expressed over time, are extracted and analysed. More specifically, we utilised this platform to investigate the impact of online social influences on the intimate decision scenario of selecting a treatment type, recovery after treatment, side effects and emotions expressed over time, using prostate cancer as a model. Results manifest the three major decision-making behaviours among patients, Paternalistic group, Autonomous group and Shared group. Furthermore, each group demonstrated diverse behaviours in post-decision discussions on clinical outcomes, advice and expressions of emotion during the twelve months following treatment. Over time, the transition of patients from information and emotional support seeking behaviours to providers of information and emotional support to other patients was also observed. Conclusions Findings from this study are a rigorous indication of the expectations of social media empowered patients, their potential for individualised decision-making, clinical and emotional needs. The increasing popularity of OSG further confirms that it is timely for clinicians to consider patient voices as expressed in OSG. We have successfully demonstrated that the proposed platform can be utilised to investigate, analyse and derive actionable insights from patient-reported information on prostate cancer, in support of patient focused healthcare delivery. The platform can be extended and applied just as effectively to any other medical condition." @default.
- W2895961568 created "2018-10-26" @default.
- W2895961568 creator A5008490552 @default.
- W2895961568 creator A5012325128 @default.
- W2895961568 creator A5021906019 @default.
- W2895961568 creator A5023925179 @default.
- W2895961568 creator A5029640560 @default.
- W2895961568 creator A5039314699 @default.
- W2895961568 creator A5055960955 @default.
- W2895961568 creator A5064845769 @default.
- W2895961568 creator A5065453477 @default.
- W2895961568 creator A5081221251 @default.
- W2895961568 creator A5089265848 @default.
- W2895961568 creator A5090043052 @default.
- W2895961568 date "2018-10-18" @default.
- W2895961568 modified "2023-10-16" @default.
- W2895961568 title "Machine learning to support social media empowered patients in cancer care and cancer treatment decisions" @default.
- W2895961568 cites W1573795912 @default.
- W2895961568 cites W1603806645 @default.
- W2895961568 cites W1795134912 @default.
- W2895961568 cites W1943745580 @default.
- W2895961568 cites W1965152904 @default.
- W2895961568 cites W1971983718 @default.
- W2895961568 cites W1983581902 @default.
- W2895961568 cites W1987425720 @default.
- W2895961568 cites W1990529840 @default.
- W2895961568 cites W2002514548 @default.
- W2895961568 cites W2004980404 @default.
- W2895961568 cites W2009790391 @default.
- W2895961568 cites W2014659288 @default.
- W2895961568 cites W2016207542 @default.
- W2895961568 cites W2021635251 @default.
- W2895961568 cites W2025724707 @default.
- W2895961568 cites W2027025688 @default.
- W2895961568 cites W2027060493 @default.
- W2895961568 cites W2033208320 @default.
- W2895961568 cites W2033609349 @default.
- W2895961568 cites W2034052303 @default.
- W2895961568 cites W2039087324 @default.
- W2895961568 cites W2039505511 @default.
- W2895961568 cites W2044017811 @default.
- W2895961568 cites W2049487316 @default.
- W2895961568 cites W2055424618 @default.
- W2895961568 cites W2064339633 @default.
- W2895961568 cites W2082302018 @default.
- W2895961568 cites W2090262881 @default.
- W2895961568 cites W2097101873 @default.
- W2895961568 cites W2099813784 @default.
- W2895961568 cites W2105596707 @default.
- W2895961568 cites W2105663228 @default.
- W2895961568 cites W2107617465 @default.
- W2895961568 cites W2114595254 @default.
- W2895961568 cites W2120185140 @default.
- W2895961568 cites W2121764873 @default.
- W2895961568 cites W2122402213 @default.
- W2895961568 cites W2122653091 @default.
- W2895961568 cites W2136715587 @default.
- W2895961568 cites W2137243498 @default.
- W2895961568 cites W2140910804 @default.
- W2895961568 cites W2141085468 @default.
- W2895961568 cites W2141708418 @default.
- W2895961568 cites W2142045602 @default.
- W2895961568 cites W2142792787 @default.
- W2895961568 cites W2150679001 @default.
- W2895961568 cites W2159583324 @default.
- W2895961568 cites W2161299495 @default.
- W2895961568 cites W2162013407 @default.
- W2895961568 cites W2168726781 @default.
- W2895961568 cites W2269984690 @default.
- W2895961568 cites W2273847690 @default.
- W2895961568 cites W2345195116 @default.
- W2895961568 cites W2404901863 @default.
- W2895961568 cites W2519027667 @default.
- W2895961568 cites W2525984666 @default.
- W2895961568 cites W2537052583 @default.
- W2895961568 cites W2548620040 @default.
- W2895961568 cites W2561981131 @default.
- W2895961568 cites W2610332124 @default.
- W2895961568 cites W2731510061 @default.
- W2895961568 cites W2766616396 @default.
- W2895961568 cites W2767218117 @default.
- W2895961568 cites W2793389659 @default.
- W2895961568 cites W2807179733 @default.
- W2895961568 cites W2891745555 @default.
- W2895961568 cites W2919115771 @default.
- W2895961568 cites W2963261455 @default.
- W2895961568 cites W2964325543 @default.
- W2895961568 cites W3027304069 @default.
- W2895961568 cites W4246717522 @default.
- W2895961568 doi "https://doi.org/10.1371/journal.pone.0205855" @default.
- W2895961568 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6193663" @default.
- W2895961568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30335805" @default.
- W2895961568 hasPublicationYear "2018" @default.
- W2895961568 type Work @default.
- W2895961568 sameAs 2895961568 @default.
- W2895961568 citedByCount "56" @default.
- W2895961568 countsByYear W28959615682019 @default.
- W2895961568 countsByYear W28959615682020 @default.