Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895978147> ?p ?o ?g. }
- W2895978147 abstract "We study the Maximum Independent Set (MIS) problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of MIS is $gamma$-stable if it has a unique optimal solution that remains the unique optimum under multiplicative perturbations of the weights by a factor of at most $gammageq 1$. The goal then is to efficiently recover the unique optimal solution. In this work, we solve stable instances of MIS on several graphs classes: we solve $widetilde{O}(Delta/sqrt{log Delta})$-stable instances on graphs of maximum degree $Delta$, $(k - 1)$-stable instances on $k$-colorable graphs and $(1 + varepsilon)$-stable instances on planar graphs. For general graphs, we present a strong lower bound showing that there are no efficient algorithms for $O(n^{frac{1}{2} - varepsilon})$-stable instances of MIS, assuming the planted clique conjecture. We also give an algorithm for $(varepsilon n)$-stable instances. As a by-product of our techniques, we give algorithms and lower bounds for stable instances of Node Multiway Cut. Furthermore, we prove a general result showing that the integrality gap of convex relaxations of several maximization problems reduces dramatically on stable instances. Moreover, we initiate the study of certified algorithms, a notion recently introduced by Makarychev and Makarychev (2018), which is a class of $gamma$-approximation algorithms that satisfy one crucial property: the solution returned is optimal for a perturbation of the original instance. We obtain $Delta$-certified algorithms for MIS on graphs of maximum degree $Delta$, and $(1+varepsilon)$-certified algorithms on planar graphs. Finally, we analyze the algorithm of Berman and Furer (1994) and prove that it is a $left(frac{Delta + 1}{3} + varepsilonright)$-certified algorithm for MIS on graphs of maximum degree $Delta$ where all weights are equal to 1." @default.
- W2895978147 created "2018-10-26" @default.
- W2895978147 creator A5024803432 @default.
- W2895978147 creator A5054031027 @default.
- W2895978147 creator A5056617357 @default.
- W2895978147 creator A5072377516 @default.
- W2895978147 creator A5078465675 @default.
- W2895978147 date "2018-10-19" @default.
- W2895978147 modified "2023-09-27" @default.
- W2895978147 title "Bilu-Linial stability, certified algorithms and the Independent Set problem" @default.
- W2895978147 cites W1483324665 @default.
- W2895978147 cites W1491127810 @default.
- W2895978147 cites W1503339058 @default.
- W2895978147 cites W1550301324 @default.
- W2895978147 cites W1558625102 @default.
- W2895978147 cites W1971749164 @default.
- W2895978147 cites W1987178221 @default.
- W2895978147 cites W1990326132 @default.
- W2895978147 cites W2010004564 @default.
- W2895978147 cites W2011869755 @default.
- W2895978147 cites W2013415302 @default.
- W2895978147 cites W2017052164 @default.
- W2895978147 cites W2033515640 @default.
- W2895978147 cites W2057512592 @default.
- W2895978147 cites W2074465184 @default.
- W2895978147 cites W2077783414 @default.
- W2895978147 cites W2080394239 @default.
- W2895978147 cites W2081254453 @default.
- W2895978147 cites W2085716675 @default.
- W2895978147 cites W2087083200 @default.
- W2895978147 cites W2088272899 @default.
- W2895978147 cites W2103011134 @default.
- W2895978147 cites W2108301529 @default.
- W2895978147 cites W2126186592 @default.
- W2895978147 cites W2137118456 @default.
- W2895978147 cites W2156760067 @default.
- W2895978147 cites W2166602562 @default.
- W2895978147 cites W2225750372 @default.
- W2895978147 cites W2272045681 @default.
- W2895978147 cites W2289504059 @default.
- W2895978147 cites W2514739098 @default.
- W2895978147 cites W2568016877 @default.
- W2895978147 cites W2607171573 @default.
- W2895978147 cites W2626597900 @default.
- W2895978147 cites W2739434859 @default.
- W2895978147 cites W2787022562 @default.
- W2895978147 cites W2798794168 @default.
- W2895978147 cites W2884886133 @default.
- W2895978147 cites W2890639290 @default.
- W2895978147 cites W2896916718 @default.
- W2895978147 cites W2950908404 @default.
- W2895978147 cites W2962736938 @default.
- W2895978147 cites W2963605961 @default.
- W2895978147 cites W2963896776 @default.
- W2895978147 cites W2964265679 @default.
- W2895978147 cites W43084171 @default.
- W2895978147 hasPublicationYear "2018" @default.
- W2895978147 type Work @default.
- W2895978147 sameAs 2895978147 @default.
- W2895978147 citedByCount "1" @default.
- W2895978147 countsByYear W28959781472020 @default.
- W2895978147 crossrefType "posted-content" @default.
- W2895978147 hasAuthorship W2895978147A5024803432 @default.
- W2895978147 hasAuthorship W2895978147A5054031027 @default.
- W2895978147 hasAuthorship W2895978147A5056617357 @default.
- W2895978147 hasAuthorship W2895978147A5072377516 @default.
- W2895978147 hasAuthorship W2895978147A5078465675 @default.
- W2895978147 hasConcept C102192266 @default.
- W2895978147 hasConcept C112680207 @default.
- W2895978147 hasConcept C11413529 @default.
- W2895978147 hasConcept C114614502 @default.
- W2895978147 hasConcept C118615104 @default.
- W2895978147 hasConcept C121332964 @default.
- W2895978147 hasConcept C122818955 @default.
- W2895978147 hasConcept C132525143 @default.
- W2895978147 hasConcept C134306372 @default.
- W2895978147 hasConcept C160446614 @default.
- W2895978147 hasConcept C18359143 @default.
- W2895978147 hasConcept C24890656 @default.
- W2895978147 hasConcept C2524010 @default.
- W2895978147 hasConcept C2775997480 @default.
- W2895978147 hasConcept C2780990831 @default.
- W2895978147 hasConcept C33923547 @default.
- W2895978147 hasConcept C42747912 @default.
- W2895978147 hasConcept C68260962 @default.
- W2895978147 hasConceptScore W2895978147C102192266 @default.
- W2895978147 hasConceptScore W2895978147C112680207 @default.
- W2895978147 hasConceptScore W2895978147C11413529 @default.
- W2895978147 hasConceptScore W2895978147C114614502 @default.
- W2895978147 hasConceptScore W2895978147C118615104 @default.
- W2895978147 hasConceptScore W2895978147C121332964 @default.
- W2895978147 hasConceptScore W2895978147C122818955 @default.
- W2895978147 hasConceptScore W2895978147C132525143 @default.
- W2895978147 hasConceptScore W2895978147C134306372 @default.
- W2895978147 hasConceptScore W2895978147C160446614 @default.
- W2895978147 hasConceptScore W2895978147C18359143 @default.
- W2895978147 hasConceptScore W2895978147C24890656 @default.
- W2895978147 hasConceptScore W2895978147C2524010 @default.
- W2895978147 hasConceptScore W2895978147C2775997480 @default.
- W2895978147 hasConceptScore W2895978147C2780990831 @default.